8,202 research outputs found

    Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead

    Get PDF
    Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning (DL) is already present in many applications ranging from computer vision for medicine to autonomous driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve impressive performance, these algorithms employ very deep networks, requiring a significant computational power, both during the training and inference time. A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute-and energy-hungry. In a scenario where several sophisticated algorithms need to be executed with limited energy and low latency, the need for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance designs. This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper discusses some of the important security issues that these DNN and SNN models may have during their execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of different networks and hardware systems designed for them

    Local memory-aware kernel perforation

    Get PDF
    Many applications provide inherent resilience to some amount of error and can potentially trade accuracy for performance by using approximate computing. Applications running on GPUs often use local memory to minimize the number of global memory accesses and to speed up execution. Local memory can also be very useful to improve the way approximate computation is performed, e.g., by improving the quality of approximation with data reconstruction techniques. This paper introduces local memory-aware perforation techniques specifically designed for the acceleration and approximation of GPU kernels. We propose a local memory-aware kernel perforation technique that first skips the loading of parts of the input data from global memory, and later uses reconstruction techniques on local memory to reach higher accuracy while having performance similar to state-of-the-art techniques. Experiments show that our approach is able to accelerate the execution of a variety of applications from 1.6× to 3× while introducing an average error of 6%, which is much smaller than that of other approaches. Results further show how much the error depends on the input data and application scenario, the impact of local memory tuning and different parameter configurations

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Partition Around Medoids Clustering on the Intel Xeon Phi Many-Core Coprocessor

    Full text link
    Abstract. The paper touches upon the problem of implementation Partition Around Medoids (PAM) clustering algorithm for the Intel Many Integrated Core architecture. PAM is a form of well-known k-Medoids clustering algorithm and is applied in various subject domains, e.g. bioinformatics, text analysis, intelligent transportation systems, etc. An optimized version of PAM for the Intel Xeon Phi coprocessor is introduced where OpenMP parallelizing technology, loop vectorization, tiling technique and efficient distance matrix computation for Euclidean metric are used. Experimental results for different data sets confirm the efficiency of the proposed algorithm
    corecore