20 research outputs found

    A Logarithmic Integrality Gap Bound for Directed Steiner Tree in Quasi-bipartite Graphs

    Get PDF
    We demonstrate that the integrality gap of the natural cut-based LP relaxation for the directed Steiner tree problem is O(log k) in quasi-bipartite graphs with k terminals. Such instances can be seen to generalize set cover, so the integrality gap analysis is tight up to a constant factor. A novel aspect of our approach is that we use the primal-dual method; a technique that is rarely used in designing approximation algorithms for network design problems in directed graphs

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    {On Subexponential Running Times for Approximating Directed Steiner Tree and Related Problems}

    Get PDF
    This paper concerns proving almost tight (super-polynomial) running times, for achieving desired approximation ratios for various problems. To illustrate, the question we study, let us consider the Set-Cover problem with n elements and m sets. Now we specify our goal to approximate Set-Cover to a factor of (1-d)ln n, for a given parameter 0= 2^{n^{c d}}, for some constant 0= exp((1+o(1)){log^{d-c}n}), for any c>0, unless the ETH is false. Our result follows by analyzing the work of Halperin and Krauthgamer [STOC, 2003]. The same lower and upper bounds hold for CST

    An O(logk)O(\log k)-Approximation for Directed Steiner Tree in Planar Graphs

    Full text link
    We present an O(logk)O(\log k)-approximation for both the edge-weighted and node-weighted versions of \DST in planar graphs where kk is the number of terminals. We extend our approach to \MDST (in general graphs \MDST and \DST are easily seen to be equivalent but in planar graphs this is not the case necessarily) in which we get an O(R+logk)O(R+\log k)-approximation for planar graphs for where RR is the number of roots

    An O(log k)-Approximation for Directed Steiner Tree in Planar Graphs

    Get PDF
    We present an O(log k)-approximation for both the edge-weighted and node-weighted versions of Directed Steiner Tree in planar graphs where k is the number of terminals. We extend our approach to Multi-Rooted Directed Steiner Tree, in which we get a O(R+log k)-approximation for planar graphs for where R is the number of roots

    Directed Steiner Tree and the Lasserre Hierarchy

    Full text link
    The goal for the Directed Steiner Tree problem is to find a minimum cost tree in a directed graph G=(V,E) that connects all terminals X to a given root r. It is well known that modulo a logarithmic factor it suffices to consider acyclic graphs where the nodes are arranged in L <= log |X| levels. Unfortunately the natural LP formulation has a |X|^(1/2) integrality gap already for 5 levels. We show that for every L, the O(L)-round Lasserre Strengthening of this LP has integrality gap O(L log |X|). This provides a polynomial time |X|^{epsilon}-approximation and a O(log^3 |X|) approximation in O(n^{log |X|) time, matching the best known approximation guarantee obtained by a greedy algorithm of Charikar et al.Comment: 23 pages, 1 figur
    corecore