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Abstract
We demonstrate that the integrality gap of the natural cut-based LP relaxation for the directed
Steiner tree problem is O(log k) in quasi-bipartite graphs with k terminals. Such instances can
be seen to generalize set cover, so the integrality gap analysis is tight up to a constant factor. A
novel aspect of our approach is that we use the primal-dual method; a technique that is rarely
used in designing approximation algorithms for network design problems in directed graphs.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, I.1.2 Artificial In-
telligence

Keywords and phrases Approximation algorithm, Primal-Dual algorithm, Directed Steiner tree

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.3

1 Introduction

In an instance of the directed Steiner tree (DST) problem, we are given a directed graph
G = (V,E), non-negative costs ce for all e ∈ E, terminal nodes X ⊆ V , and a root r ∈ V .
The remaining nodes in V − (X ∪{r}) are the Steiner nodes. The goal is to find the cheapest
collection of edges F ⊆ E such that for every terminal t ∈ X there is an r, t-path using only
edges in F . Throughout, we let n denote |V | and k denote |X|.

If X ∪ {r} = V , then the problem is simply the minimum-cost arborescence problem
which can be solved efficiently [5]. However, the general case is well-known to be NP-hard.
In fact, the problem can be seen to generalize the set-cover and group Steiner tree problems.
The latter cannot be approximated within O(log2−ε(n)) for any constant ε > 0 unless
NP ⊆ DTIME(npolylog(n)) [11].

For a DST instance G, let OPTG denote the value of the optimum solution for this
instance Say that an instance G = (V,E) of DST with terminals X is `-layered if V can
be partitioned as V0, V1, . . . , V` where V0 = {r}, V` = X and every edge uv ∈ E has u ∈ Vi
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3:2 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

and v ∈ Vi+1 for some 0 ≤ i < `. Zelikovsky showed for any DST instance G and integer
` ≥ 1 that we can compute an `-layered DST instance H in poly(n, `) time such that
OPTG ≤ OPTH ≤ ` · k1/` ·OPTG and that a DST solution in H can be efficiently mapped
to a DST solution in G with the same cost [2, 17].

Charikar et al. [3] exploited this fact and presented an O(`2 · k1/` · log k)-approximation
with running time poly(n, k`) for any integer ` ≥ 1. In particular, this can be used to
obtain an O(log3 k)-approximation in quasi-polynomial time and a polynomial-time O(kε)-
approximation for any constant ε > 0. Finding a polynomial-time polylogarithmic approxim-
ation remains an important open problem.

For a set of nodes S, we let δin(S) = {uv ∈ V : u 6∈ S and v ∈ S} be the set of edges
entering S. The following is a natural linear programming (LP) relaxation for directed
Steiner tree.

min
∑
e∈E

cexe (DST-Primal)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅ (1)
xe ≥ 0 ∀e ∈ E

This LP is called a relaxation because of the natural correspondence between feasible solutions
to a DST instance G and feasible {0, 1}-integer solutions to the corresponding LP (DST-
Primal). Thus, if we let OPTLP denote the value of an optimum (possibly fractional)
solution to LP (DST-Primal) then we have OPTLP ≤ OPTG. For a particular instance
G we say the integrality gap is OPTG/OPTLP ; we are interested in placing the smallest
possible upper bound on this quantity.

Interestingly, if |X| = 1 (the shortest path problem) or X ∪ {r} = V (the minimum-cost
arborescence problem), the extreme points of (DST-Primal) are integral so the integrality
gap is 1 ([13] and [5], respectively). However, in the general case Zosin and Khuller showed that
(DST-Primal) is not useful for finding polylog(k)-approximation algorithms for DST [18].
The authors showed that the integrality gap of (DST-Primal) relaxation can, unfortunately,
be as bad as Ω(

√
k), even in instances where G is a 4-layered graph. In their examples, the

number of nodes n is exponential in k so the integrality gap may still be O(logc n) for some
constant c.

On the other hand, Rothvoss recently showed that applying O(l) rounds of the semidefinite
programming Lasserre hierarchy to (the flow-based extended formulation of) (DST-Primal)
yields an SDP with integrality gap O(` · log k) for `-layered instances [15]. Subsequently,
Friggstad et al. [7] showed similar results for the weaker Sherali-Adams and Lovász-Schrijver
linear programming hierarchies.

In this paper we consider the class of quasi-bipartite DST instances. An instance of
DST is quasi-bipartite if the Steiner nodes V \ (X ∪ {r}) form an independent set (i.e., no
directed edge has both endpoints in V \ (X ∪ {r})). Such instances still capture the set
cover problem, and thus do not admit an (1− ε) ln k-approximation for any constant ε > 0
unless P = NP [4, 6]. Furthermore, it is straightforward to adapt known integrality gap
constructions for set cover (e.g. [16]) to show that the integrality gap of (DST-Primal)
can be as bad as (1 − o(1)) · ln k in some instances. Hibi and Fujito [12] give an O(log k)-
approximation for quasi-bipartite instances of DST, but do not provide any integrality gap
bounds.

Quasi-bipartite instances have been well-studied in the context of undirected Steiner trees.
The class of graphs was first introduced by Rajagopalan and Vazirani [14] who studied the
integrality gap of (DST-Primal) for the bidirected map of the given undirected Steiner
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tree instances. Currently, the best approximation for quasi-bipartite instances of undirected
Steiner tree is 73

60 by Goemans et al. [8] who also bound the integrality gap of the bidirected
cut relaxation by the same quantity. This is the same LP relaxation as (DST-Primal),
applied to the directed graph obtained by replacing each undirected edge {u, v} with the two
directed edges uv and vu. This is a slight improvement over a prior ( 73

60 + ε)-approximation
for any constant ε > 0 by Byrka et al. [1].

The best approximation for general instances of undirected Steiner tree is ln(4) + ε for
any constant ε > 0 [1]. However, the best known upper bound on the integrality gap of the
bidirected cut relaxation for non-quasi-bipartite instances is only 2; it is an open problem to
determine if this integrality gap is a constant-factor better than 2.

1.1 Our contributions

Our main result is the following. Let Hn =
∑n
i=1 1/i = O(logn) be the nth harmonic

number.

I Theorem 1. The integrality gap of LP (DST-Primal) is at most 2Hk = O(log k) in
quasi-bipartite graphs with k terminals. Furthermore, a Steiner tree with cost at most
2Hk ·OPTLP can be constructed in polynomial time.

As noted above, Theorem 1 is asymptotically tight since any of the well-known Ω(log k)
integrality gap constructions for set cover instances with k items translate directly to an
integrality gap lower bound for (DST-Primal), using the usual reduction from set cover to
2-layered quasi-bipartite instances of directed Steiner tree.

This integrality gap bound asymptotically matches the approximation guarantee proven
by Hibi and Fujito for quasi-bipartite DST instaces [12]. We remark that their approach is
unlikely to give any integrality gap bounds for (DST-Primal) because they iteratively choose
low-density full Steiner trees in the same spirit as [3] and give an O(` · log k)-approximation
for finding the optimum DST solution T that does not contain a path with ≥ ` Steiner nodes
V \ (X ∪ {r}). In particular, their approach will also find an O(log k)-approximation to the
optimum DST solution in 4-layered graphs and we know the integrality gap in some 4-layered
instances is Ω(

√
k) [18].

We prove Theorem 1 by constructing a directed Steiner tree in an iterative manner.
An iteration starts with a partial Steiner tree (see Definition 2 below), which consists of
multiple directed components containing the terminals in X. Then a set of arcs are purchased
to augment this partial solution to one with fewer directed components. These arcs are
discovered through a primal-dual moat growing procedure; a feasible solution for the dual
(DST-Primal) is constructed and the cost of the purchased arcs can be bounded using this
dual solution.

While the primal-dual technique has been very successful for undirected network design
problems (e.g., see [9]), far fewer success stories are known in directed domains. Examples
include a primal-dual interpretation of Dijkstra’s shortest path algorithm (e.g., see Chapter
5.4 of [13]), and Edmonds’ [5] algorithm for minimum-cost arborescences. In both cases, the
special structure of the problem is instrumental in the primal-dual construction. One issue
arising in the implementation of primal-dual approaches for directed network design problems
appears to be a certain overlap in the moat structure maintained by these algorithms. We are
able to handle this difficulty here by exploiting the quasi-bipartite nature of our instances.

SWAT 2016



3:4 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

2 The integrality gap bound

2.1 Preliminaries and definitions
We now present an algorithmic proof of Theorem 1. As we will follow a primal-dual strategy,
we first present the LP dual of (DST-Primal).

max
∑
S

yS (DST-Dual)

s.t.
∑

S:e∈δin(S)

yS ≤ ce ∀e ∈ E (2)

y ≥0

In (DST-Dual), the sums range only over sets of nodes S such that S ⊆ V −r and S∩X 6= ∅.
Our algorithm builds up partial solutions, which are defined as follows.

I Definition 2. A partial Steiner tree is a tuple T = ({Bi, hi, Fi}`i=0, B̄) where, for each
0 ≤ i ≤ `, Bi is a subset of nodes, hi ∈ Bi, and Fi is a subset of edges with endpoints only
in Bi such that the following hold.

The sets B0, B1, . . . , B`, B̄ form a partition V .
B̄ ⊆ V −X − r (i.e. B̄ is a subset of Steiner nodes).
h0 = r and hi ∈ X for each 1 ≤ i ≤ `.
For every 0 ≤ i ≤ ` and every v ∈ Bi, Fi contains an hi, v-path.

We say that B̄ is the set of free Steiner nodes in T and that hi is the head of Bi for each
0 ≤ i ≤ `. The edges of T , denoted by E(T ), are simply ∪`i=0Fi. We say that B0, . . . , B`
are the components of T where B0 is the root component and B1, . . . , B` are the non-root
components.

Figure 1 illustrates a partial Steiner tree. Note that if T is a partial Steiner tree with ` = 0
non-root components, then E(T ) is in fact a feasible DST solution.

Finally, for a subset of edges F we let cost(F ) =
∑
e∈F ce.

2.2 High-level approach
Our algorithm builds up partial Steiner trees in an iterative manner while ensuring that the
cost does not increase by a significant amount between iterations. Specifically, we prove the
following lemma in Section 3. Recall that OPTLP refers to the optimum solution value for
(DST-Primal).

I Lemma 3. Given a partial Steiner tree T with ` ≥ 1 non-root components, there is a
polynomial-time algorithm that finds a partial Steiner tree T ′ with `′ < ` non-root components
such that

cost(E(T ′)) ≤ cost(E(T )) + 2 ·OPTLP ·
`− `′

`
.

Theorem 1 follows from Lemma 3 in a standard way.

Proof of Theorem 1. Initialize a partial Steiner tree Tk with k non-root components as
follows. Let B̄ be the set of all Steiner nodes, B0 = {r}, and F0 = ∅. Furthermore, label the
terminals as t1, . . . , tk ∈ X and for each 1 ≤ i ≤ k let Bi = {ti}, hi = ti and Fi = ∅. Note
that cost(E(Tk)) = 0.
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r

Figure 1 A partial Steiner tree with ` = 3 non-root components (the root is pictured at the top).
The only edges shown are those in some Fi. The white circles are the heads of the various sets Bi

and the black circles are terminals that are not heads of any components. The squares outside of
the components are the free Steiner nodes B̄. Note, in particular, that each head can reach every
node in its respective component. We do not require each Fi to be a minimal set of edges with this
property.

Iterate Lemma 3 to obtain a sequence of partial Steiner trees T`0 , T`1 , T`2 , . . . , T`a where
T`i

has `i non-root components such that k = `0 > `1 > . . . > `a = 0 and

cost(E(Ti+1)) ≤ cost(E(Ti)) + 2 ·OPTLP ·
`i − `i+1

`i

for each 0 ≤ i < a. Return E(T`a
) as the final Steiner tree.

That E(Ta) can be found efficiently follows simply because we are iterating the efficient
algorithm from Lemma 3 at most k times. The cost of this Steiner tree can be bounded as
follows.

cost(E(Ta)) ≤ 2 ·OPTLP ·
a−1∑
i=0

`i − `i+1

`i
= 2 ·OPTLP ·

a−1∑
i=0

`i∑
j=`i+1+1

1
`i

≤ 2 ·OPTLP ·
a−1∑
i=0

`i∑
j=`i+1+1

1
j

= 2 ·OPTLP ·
k∑
j=1

1
k

= 2 ·OPTLP ·Hk. J

SWAT 2016



3:6 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

The idea presented above resembles one proposed by Guha et al. [10] for bounding
the integrality gap of a natural relaxation for undirected node-weighted Steiner tree by
O(log k) [10]. Like our approach, Guha et al. also build a solution incrementally. In each
phase of the algorithm, the authors reduce the number of connected components of a partial
solution by adding vertices whose cost is charged carefully to the value of a dual LP solution
that the algorithm constructs simultaneously.

3 A primal-dual proof of Lemma 3

Consider a given partial Steiner tree T = ({Bi, hi, Fi}`i=0, B̄) with ` ≥ 1 non-root compon-
ents. Lemma 3 promises a partial Steiner tree T ′ with `′ < ` non-root components with
cost(E(T ′)) ≤ cost(E(T )) + 2 ·OPTLP · `−`

′

` . In this section we will present an algorithm
that augments forest T in the sense that it computes a set of edges to add to T . The proof
presented here is constructive: we will design a primal-dual algorithm that maintains a
feasible dual solution for (DST-Dual), and uses the structure of this solution to guide the
process of adding edges to T .

3.1 The algorithm
For any two nodes u, v ∈ V , let d(u, v) be the cost of the cheapest u, v-path in G. More
generally, for a subset ∅ ( S ⊆ V and a node v ∈ V we let d(S, v) = minu∈S d(u, v). We will
assume that for every 0 ≤ i ≤ ` and 1 ≤ j ≤ `, j 6= i that d(Bi, hj) > 0 as otherwise, we
could merge Bi and Bj by adding the 0-cost Bi, hj-path to T .

The usual conventions of primal-dual algorithms will be adopted. We think of such an
algorithm as a continuous process that increases the value of some dual variables over time.
At time t = 0, all dual variables are initialized to a value of 0. At any point in time, exactly
` dual variables will be raised at a rate of one unit per time unit. We will use ∆ for the time
at which the algorithm terminates. As is customary, we will say that an edge e goes tight
if the dual constraint for e becomes tight as the dual variables are being increased. When
an edge goes tight, we will perform some updates to the various sets being maintained by
the algorithm. Again, the standard convention applies that if multiple edges go tight at the
same time, then we process them in any order.

Algorithm 1 describes the main subroutine that augments the partial Steiner tree T to
one with fewer components. It maintains a collection of moats Mi ⊆ V − {r} and edges F ′i
for each 1 ≤ i ≤ `, while ensuring that the dual solution y it grows remains feasible. Mainly
to aid notation, our algorithm will maintain a so called virtual body βi for all 0 ≤ i ≤ ` such
that Bi ⊆ βi ⊆ Bi ∪ B̄. We will ensure that each v ∈ B̄ ∩ βi has a mate u ∈ Bi such that
the edge uv has cost no more than ∆. For notational convenience, we will let β0 = B0 be
the virtual body of the root component. The algorithm will not grow a moat around the
root since dual variables do not exist for sets containing the root.

Our algorithm will ensure that moats are pairwise terminal-disjoint. In fact, we ensure
that any two moats may only intersect in B̄. Terminal-disjointness together with the quasi-
bipartite structure of the input graph will allow us to charge the cost of arcs added in the
augmentation process to the duals grown.

An intuitive overview of our process is the following. At any time t ≥ 0, the moats Mi

will consist of all nodes v with d(v, hi) ≤ t. The moats Mi will be grown until, at some time
∆, for at least one pair i, j with i 6= j, there is a tight path connecting βj to hi. At this
point the algorithm stops, and adds a carefully chosen collection of tight arcs to the partial
Steiner tree that merges Bj and Bi (and potentially other components). Crucially, the cost
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Figure 2 The moats around the two partial Steiner trees are depicted by the gray circles. The
dashed edges are those bought by the first moat and the solid edges are those bought by the second
moat. Note the moats only intersect in B (in particular, v is the only lying in both moats). Also, u

lies in the virtual body for the left partial Steiner tree and the dashed arc entering u is coming from
its mate. The edges Fi from the original partial Steiner trees are not shown.
Observe that if any edge entering v goes tight then it must be from either r or some terminal
(because G is quasi-bipartite). This would allow us to merge at least one partial Steiner tree into
the body of another.

of the added arcs will be charged to the value of the dual solution grown around the merged
components.

Due the structure of quasi-bipartite graphs, we are able to ensure that in each step of the
algorithm the active moats pay for at most one arc that is ultimately bought to form T ′.
Also, if T ′ has `′ < ` non-root components then each arc was paid for by moats around at
most `− `′ + 1 ≤ 2(`− `′) different heads. So, the total cost of all purchased arcs is at most
2(`− `′) ·∆. Finally, the total dual grown is ` ·∆, which is ≤ OPTLP due to feasibility, so
the cost of the edges bought can be bounded by 2 `−`

′

` ·OPTLP .

3.2 Algorithm and invariants
Now we will be more precise. The primal-dual procedure is presented in Algorithm 1. The
following invariants will be maintained at any time 0 ≤ t ≤ ∆ during the execution of
Algorithm 1.

1. For each 1 ≤ i ≤ `, hi ∈Mi and Mi ⊆ V − {r} (so there is a variable yMi
in the dual).

2. For each 1 ≤ i ≤ `, Mi = {v ∈ V : d(v, hi) < t} ∪ S where S ⊆ {v ∈ V : d(v, hi) = t}.
3. Mi ∩Mj ⊆ B̄ and both βi ∩ βj = Mi ∩ βj = ∅ for distinct 0 ≤ i, j ≤ `.
4. For each 1 ≤ i ≤ ` we have Bi ⊆ βi ⊆ Bi ∪ B̄. Furthermore, for each each v ∈ βi − Bi

there is a mate u ∈ Bi such that uv ∈ E and cuv ≤ t.
5. y is feasible for LP (DST-Dual) with value exactly ` · t.

These concepts are illustrated in Figure 2.

3.3 Invariant analysis
I Lemma 4. Invariants 1–5 are maintained by Algorithm 1 until the condition in the if
statement in Step (5) is true. Furthermore, the algorithm terminates in O(n · k) iterations.

SWAT 2016



3:8 A Logarithmic Integrality Gap Bound for Directed Steiner Tree in QB Graphs

Algorithm 1 Dual Growing Procedure
1: Mi ← {v ∈ V : d(v, hi) = 0}, 1 ≤ i ≤ `
2: βi ← Bi for 0 ≤ i ≤ `
3: y ← 0
4: Raise yMi′ uniformly for each moat Mi′ until some edge uv goes tight
5: if u ∈ βj for some 0 ≤ j ≤ ` and v ∈Mi′ for some i′ 6= j then
6: return the partial Steiner tree T ′ described in Lemma 6.
7: else
8: Let Mi be the unique moat with uv ∈ δin(Mi) . cf. Proposition 5
9: Mi ←Mi ∪ {u}

10: if u ∈ βi then
11: βi ← βi ∪ {v}
12: go to Step (4)

Proof. Clearly the invariants are true after the initialization steps (at time t = 0), given that
d(Bi, hj) > 0 for any i 6= j. To see why Algorithm 1 terminates in a polynomial number of
iterations, note that each iteration increases the size some moat by 1 and does not decrease
the size of any moats. So after at most kn iterations some moat will grow to include the
virtual body of another moat, at which point the algorithm stops.

Assume now that the invariants are true at some point just before Step (4) is executed and
that the condition in Step (5) is false after Step (4) finishes. We will show that the invariants
continue to hold just before the next iteration starts. We let uv denote the edge that went
tight that is considered in Step (4). We also let t denote the total time the algorithm has
executed (i.e. grown moats) up to this point.

Before proceeding with our proof, we exhibit the following useful fact. In what follows,
let M t′

j be the moat around hj at any time t′ ≤ t during the algorithm. This proposition
demonstrates how we control the overlap of the moats by exploiting the quasi-bipartite
structure.

I Proposition 5. If uv ∈ δin(Mi), then uv 6∈ δin(M t′

j ) for any j 6= i, and for any t′ ≤ t.

Proof. Suppose, for the sake of contradiction, that uv ∈ δin(M t′

j ) for some j 6= i and t′ ≤ t.
Since M t′

j is a subset of Mj , the moat containing hj at time t, we must have v ∈Mj ∩Mi.
Invariant 3 now implies that v ∈ B̄. Since G is quasi-bipartite, then u ∈ X. Therefore
u ∈ Bj′ for some j′. Since j′ 6= i or j′ 6= j, then the terminating condition in Step (5) would
have been satisfied as u ∈ βj′ . A contradiction. J

Following Proposition 5, we let i be the unique index such that uv ∈ δin(Mi) as in
Step (8).

Invariant 1

First note that Mi never loses vertices during the algorithm’s execution, and it therefore
always contains head vertex hi. Also, vertex u is not part of B0 as otherwise the algorithm
would have terminated in Step (5). Hence Mi ∪ {u} also does not contain the root node r.
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Invariant 2

This is just a reinterpretation of Dijkstra’s algorithm in the primal-dual framework (e.g. Chapter
5.4 of [13]), coupled with the fact that no edge considered in Step (4) in some iteration
crosses more than one moat at any given time (Proposition 5).

Invariant 3

Suppose (Mi∪{u})∩Mj 6⊆ B̄ for some i 6= j. This implies u ∈Mj \B̄, and hence u ∈ Bj ⊆ βj .
Thus, the termination condition in Step (5) was satisfied and the algorithm should have
terminated; contradiction.

If v is not added to βi, and thus βi remains unchanged, βi ∩ βj = Mj ∩ βi = ∅ continues
to hold for j 6= i. We also must have that (Mi ∪ {u}) ∩ βj = ∅ for i 6= j, as otherwise u ∈ βj
and this would violate the termination condition in Step (5).

Now suppose that v is added to βi. Then for j 6= i we still have (βi ∪ {v}) ∩ βj = ∅ as
otherwise v ∈ βj which contradicts v ∈Mi and the fact that Invariant 3 holds at the start of
this iteration. We also have that Mj ∩ (βi ∪ {v}) = ∅ as otherwise v ∈Mj . But this would
mean that u ∈Mj as well by Proposition 5. We established above that (Mi ∪{u})∩Mj ⊆ B.
However, {u, v} ⊆ (Mi ∪ {u}) ∩Mj ⊆ B contradicts the fact that G is quasi-bipartite.

Invariant 4

That Bi ⊆ βi is clear simply because we only add nodes to the sets βi. Suppose now that v is
added to βi. In this case, v 6∈ Bi as Bi ⊆ βi from the start. We claim that v can also not be
part of Bj for some j 6= i, since otherwise ∅ 6= Bj ∩Mi ⊆ βj ∩Mi, contradicting Invariant 3.
Hence v ∈ B̄. Note that the quasi-bipartiteness of G implies that u ∈ X, and hence u ∈ Bi.
Proposition 5 finally implies that only the moats crossed by uv are moats around i, so since
the algorithm only grows one moat around i at any time we have cuv ≤ t, and this completes
the proof of Invariant 4.

Invariant 5

The Step (4) stops the first time a constraint becomes tight, so feasibility is maintained.
In each step, the algorithm grows precisely ` moats simultaneously. Because the objective
function of (DST-Dual) is simply the sum of the dual variables, then the value of the dual
is just ` times the total time spent growing dual variables. J

3.4 Augmenting T
To complete the final detail in the description of the algorithm, we now show how to construct
the partial Steiner tree after Step (5) has been reached. Lemma 4 shows that Invariants 1
through 5 hold just before Step (4) in the final iteration. Say the final iteration executes for
δ time units and that uv is the edge that goes tight and was considered in Step (5).

I Lemma 6. When Step (6) is reached in Algorithm 1, we can efficiently find a partial Steiner
tree T ′ with `′ < ` non-root components such that cost(E(T ′)) ≤ cost(E(pt))+2 `−`

′

` ·OPTLP .

Proof. Let j be the unique index such that u ∈ βj at time ∆. There is exactly one such j
because βi ∩ βj = ∅ for i 6= j is ensured by the invariants. Next, let J = {i′ 6= j : v ∈Mi′}
and note that J consists of all indices i′ (except, perhaps, j) such that uv ∈ δin(Mi′). By
the termination condition, J 6= ∅. Vertex u lies in βj by definition. If u 6∈ Bj then we let w
be the mate of u as defined in Invariant 4. Otherwise, if w ∈ Bj , we let w = u.

SWAT 2016
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For notational convenience, we let Pj be the path consisting of the single edge wu (or just
the trivial path with no edges if w = u). In either case, say cost of Pj is ∆− εj where εj ≥ 0
(cf. Invariant 4). For each i′ ∈ J , let Pi′ be a shortest v, hi′ -path. Invariant 2 implies that

c(Pi′) = ∆− εi′ , (3)

for some εi′ ≥ 0. Observe also that the tightness of uv at time ∆ and the definition of J
imply that∑

i′∈J∪{j}

εi′ ≥ cuv. (4)

In fact, precisely a εi′ -value of the dual variables for i′ 6= j contribute to cuv; the contribution
of j’s variables to cuv is at most εi′ .

Construct a partial Steiner tree T ′ obtained from T and Algorithm 1 as follows.
The sets Bj′ , Fj′ and head hj′ are unchanged for all j′ 6∈ J ∪ {j}.
Replace the components {Bi′}i′∈J∪{j} with a component B :=

⋃
i′∈J∪{j} (Bi′ ∪ V (Pi′))

having head h := hj . The edges of this component in T ′ are F :=
⋃
i′∈J∪{j}(Fi′ ∪

E(Pi′)) ∪ {uv}.
The free Steiner nodes B̄′ of T ′ are the Steiner nodes not contained in any of these
components.

Namely, B̄′ consists of those nodes in B̄ that are not contained on any path Pi′ , i′ ∈ J ∪ {j}.
We show that Steiner tree T ′ as constructed above satisfies the conditions stated in

Lemma 3. We first verify that T ′ as constructed above is indeed a valid partial Steiner tree.
Clearly the new sets B̄′, {Bi}i6∈J+j and B partition V and B̄′ is a subset of Steiner nodes.

Note that if 0 ∈ J ∪ {j} in the above construction, then j = 0 because no moat contains
r. Thus, if B0 is replaced when B is constructed, then r is the head of this new component.

Next, consider any b ∈ B. If b ∈ Bj then there is an hj , b-path in Fj ⊆ F . If b ∈ Bi′ , i′ 6= j

then it can be reached from hj in (B,F ) as follows. Follow the hj , w-path in Fj , then the
w, u path Pj , cross the edge uv, follow Pi′ to reach hi′ , and finally follow the hi′ , b-path in
Fi′ . Finally, if b 6∈ Bi′ for any i′ ∈ J + j then b lies on some path Pi′ , in which case it can be
reached in a similar way.

It is also clear that E(T ) ⊆ E(T ′) and that the number of non-root components in T ′ is
`− |J | < `. Also, cost(E(T ′))− cost(E(T )) is at most the cost of the the paths {Pi′}i′∈J+i
plus cuv.

It now easily follows from (3) and (4) that∑
i′∈J∪{j}

cost(E(Pi′)) + cuv ≤
∑

i′∈J∪{j}

(∆− εi′) + cuv ≤ (|J |+ 1)∆ ≤ |J |+ 1
`

·OPTLP .

The last bound follows because the feasible dual we have grown has value ` ·∆ ≤ OPTLP .
Let `′ = ` − |J | be the number of nonroot components in T ′. Conclude by observing
|J |+ 1 = `− `′ + 1 ≤ 2(`− `′). J

To wrap things up, executing Algorithm 1 and constructing the partial Steiner tree as in
Lemma 6 yields the partial Steiner tree that is promised by Lemma 3.

4 Conclusion

We have shown that the integrality gap of LP relaxation (DST-Primal) is O(log k) in
quasi-bipartite instances of directed Steiner tree. The gap is known to be Ω(

√
k) in 4-layered
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instances [18] and O(log k) in 3-layered instances [7]. Since quasi-bipartite graphs are a
generalization 2-layered instances, it is natural to ask if there is a generalization of 3-layered
instances which has an O(log k) or even o(

√
k) integrality gap.

One possible generalization of 3-layered graphs would be when the subgraph of G induced
by the Steiner nodes does not have a node with both positive indegree and positive outdegree.
None of the known results on directed Steiner tree suggest such instances have a bad gap.

Even when restricted to 3-layered graphs, a straightforward adaptation of our algorithm
that grow moats around the partial Steiner tree heads until some partial Steiner trees
absorbs another fails to grow a sufficiently large dual to pay for the augmentation within any
reasonable factor. A new idea is needed.
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