40 research outputs found

    The New Knowledge Environment: Quality Initiatives in Health Sciences Libraries

    Get PDF
    published or submitted for publicatio

    Special Libraries, Fall 1988

    Get PDF
    Volume 79, Issue 4https://scholarworks.sjsu.edu/sla_sl_1988/1003/thumbnail.jp

    IAIMS newsletter

    Get PDF
    NewsletterThe IAIMS Newsletter (1996-2005) provides valuable information about library activities and resources as well as informative articles related to information technology

    Library Trends 42 (2) 1993: Education for Library and Information Management Careers in Corporate Environments

    Get PDF
    published or submitted for publicatio

    Special Libraries, Spring 1994

    Get PDF
    Volume 85, Issue 2https://scholarworks.sjsu.edu/sla_sl_1994/1001/thumbnail.jp

    Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine by \u3ci\u3eChrysopogon zizanioides\u3c/i\u3e

    Get PDF
    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX have led to several contamination sites across the United States. RDX is both persistent in the environment and a threat to human health, making its remediation vital. The use of plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is being considered as a possible solution. In the present study, the tropical grass Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease in RDX concentration in the media of both controls and plant treatments was seen within the first 18 hours of the experiment with the greatest loss in RDX over time occurring within the first 6 hours of exposure. The loss was similar in both controls and plant exposures and possibly attributed to rapid uptake by the containers. A plant from one treatment at each of the three concentrations was harvested at Day 10, 20 and 30 throughout the experiment and extracted to determine the localization of RDX within the tissue and potentially identify any metabolites on the basis of differing retention times. Of the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% respectively, was quantified in vetiver extracts, with the majority of the RDX being localized to the roots. All plants not yet harvested were harvested on Day 30 of the experiment. A total of three plants exposed to each concentration level as well as the control, were extracted and analyzed with HPLC to determine amount of RDX taken up, localization of RDX within the plant tissue, and potentially identify any metabolites. Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was observed in plants exposed to all the different concentrations of RDX, control plants grown in media not exposed to RDX showed the greatest biomass loss of all the treatments. There was also little variation in chlorophyll content between the different concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 10 by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a plant system in the phytoremediation of RDX

    Effect of CPOE User Interface Design on User-Initiated Access to Educational and Patient Information during Clinical Care

    Get PDF
    Objective: Authors evaluated whether displaying context sensitive links to infrequently accessed educational materials and patient information via the user interface of an inpatient computerized care provider order entry (CPOE) system would affect access rates to the materials. Design: The CPOE of Vanderbilt University Hospital (VUH) included "baseline” clinical decision support advice for safety and quality. Authors augmented this with seven new primarily educational decision support features. A prospective, randomized, controlled trial compared clinicians' utilization rates for the new materials via two interfaces. Control subjects could access study-related decision support from a menu in the standard CPOE interface. Intervention subjects received active notification when study-related decision support was available through context sensitive, visibly highlighted, selectable hyperlinks. Measurements: Rates of opportunities to access and utilization of study-related decision support materials from April 1999 through March 2000 on seven VUH Internal Medicine wards. Results: During 4,466 intervention subject-days, there were 240,504 (53.9/subject-day) opportunities for study-related decision support, while during 3,397 control subject-days, there were 178,235 (52.5/subject-day) opportunities for such decision support, respectively (p = 0.11). Individual intervention subjects accessed the decision support features at least once on 3.8% of subject-days logged on (278 responses); controls accessed it at least once on 0.6% of subject-days (18 responses), with a response rate ratio adjusted for decision support frequency of 9.17 (95% confidence interval 4.6-18, p < 0.0005). On average, intervention subjects accessed study-related decision support materials once every 16 days individually and once every 1.26 days in aggregate. Conclusion: Highlighting availability of context-sensitive educational materials and patient information through visible hyperlinks significantly increased utilization rates for study-related decision support when compared to "standard” VUH CPOE methods, although absolute response rates were lo
    corecore