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Abstract 
 

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been 

used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX 

have led to several contamination sites across the United States. RDX is both persistent in 

the environment and a threat to human health, making its remediation vital. The use of 

plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is 

being considered as a possible solution. In the present study, the tropical grass 

Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different 

concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high 

performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr 

during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease 

in RDX concentration in the media of both controls and plant treatments was seen within 

the first 18 hours of the experiment with the greatest loss in RDX over time occurring 

within the first 6 hours of exposure. The loss was similar in both controls and plant 

exposures and possibly attributed to rapid uptake by the containers. A plant from one 

treatment at each of the three concentrations was harvested at Day 10, 20 and 30 

throughout the experiment and extracted to determine the localization of RDX within the 

tissue and potentially identify any metabolites on the basis of differing retention times. Of 

the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% 

respectively, was quantified in vetiver extracts, with the majority of the RDX being 

localized to the roots. All plants not yet harvested were harvested on Day 30 of the 

experiment. A total of three plants exposed to each concentration level as well as the 

control, were extracted and analyzed with HPLC to determine amount of RDX taken up, 

localization of RDX within the plant tissue, and potentially identify any metabolites. 

Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was 

observed in plants exposed to all the different concentrations of RDX, control plants 

grown in media not exposed to RDX showed the greatest biomass loss of all the 

treatments. There was also little variation in chlorophyll content between the different 

concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 
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by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a 

plant system in the phytoremediation of RDX.  
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Chapter 1 

Introduction and Objectives 
 

1.1 RDX Contamination and Toxicity 

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that was 

once used heavily by the military as an explosive (Table 1.1). It has also been used 

commercially in coal mining (Chen et al. 2011). Such heavy use and therefore production 

of RDX has contributed to sites that are heavily contaminated with RDX, among other 

energetic compounds, such as TNT and HMX (Yoon 2005). RDX is highly soluble in 

water, which contributes to its ability to leach into the groundwater from the soil 

(ATSDR 1995).  Several military sites in the U.S. have high levels of RDX 

contamination that surpass the maximum contaminant level for drinking water, 0.1 mg/L 

(Etinier 1989). RDX contamination largely results from the manufacturing process and 

from improper disposal (Best et al. 1999; Rao et al. 2009; Chen et al. 2011).  RDX is 

persistent in soil and groundwater and is considered toxic, affecting the central nervous 

system, gastrointestinal and renal system in humans (Etinier 1989). Such environmental 

persistence and threat to human health has led to a need for remediation of the 

contaminated sites, which are considered 16 on the national priority list for superfund 

cleanup sites across the U.S. (ATSDR 1995).  

 

1.2 Past Methods of RDX Remediation 

Past methods of remediating explosive-contaminated soil include: open 

burning/open detonation (OB/OD), adsorption onto activated carbon or resin, advanced 

photooxidation (UV/O3), biodegradation, composting, and chemical treatment (Card and 

Autenrieth et al. 1998; Schnoor et al. 2006).  Phytoremediation is a promising alternative 

to these past remediation methods as it is economical, environmentally friendly, and is 

thought to be a particularly effective method for removing low concentrations of 

contaminants that are spread over a large area, which matches as a good remediation 

method for explosives contamination because it is wide-spread, diffuse and heterogenous 
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within the contamination sites (Schnoor et al. 2006). Some existing concerns with 

phytoremediation as a clean-up method include: how long the contaminants remain in the 

plant tissue as well as whether or not they are metabolized or degraded. In some instances 

the metabolites and degradation products of the contaminants are equally or more toxic 

than the original contaminant and this could have an impact on both human and 

environmental health.  

 

1.3 Phytoremediation of RDX 

1.3.1 “Green Liver” Model 

Previous research indicates plants are able to uptake several contaminants, such as 

metals, organic compounds and explosives from soil and groundwater. The “Green 

Liver” model is a concept developed to describe the transformation process of xenobiotic 

pollutants once they are taken up from the soil by plants. It is proposed that the process of 

how plants deal with contaminants is similar to how the human liver metabolizes 

toxicants. The 3 steps proposed in this model include: initial transformation or 

“activation” of contaminant by several reactions such as, oxidation, reduction, or 

hydrolysis, followed by conjugation of activated compounds with plant molecules such as 

D-glucose, glutathione, or amino acids to produce soluble or insoluble substances, which 

are subsequently sequestered in cellular compartments of the plant for storage and 

compartmentalization (Schnoor et al. 2006; Yoon et al. 2005).  The soluble compounds 

are stored in vacuoules or as cell wall material, whereas the insoluble compounds are 

likely incorporated into the cell wall material (Yoon et al. 2005). Several plant enzymes 

are responsible for these processes and will be discussed in following sections. 

 

1.3.2 Physical and Chemical Properties of RDX and TNT 

The ability of plants to uptake and potentially metabolize xenobiotics and 

pollutants from the soil is largely dependent on the physical and chemical properties of 

those specific compounds. While phytoremediation of RDX has not been extensively 

studied, phytoremediation and subsequent plant metabolism of TNT has been studied in 
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great detail and it is assumed that phytoremediation of RDX will be similar. Table 1.1 

compares the physical and chemical properties of RDX and TNT that are largely related 

to a plant’s ability to uptake the compounds from soil. In order for a compound to be 

taken up by a plant it must first be able to pass through the membrane of the roots, which 

is largely dependent on the logarithm of the compound’s octanol water partition 

coefficient, KOW (Yoon et al. 2005).  Various studies have looked at this relationship and 

have indicated that hydrophilic compounds, those with log KOW of less than 1.8, are not 

able to pass through the lipid-rich membranes of roots, while hydrophobic compounds 

with log KOW greater than 3.8 will be taken up into the roots, but will not be translocated 

to the shoots (Yoon et al. 2005). The log KOW of RDX and TNT differ, with RDX having 

half the log KOW of TNT (Table 1.1). The water solubility of TNT is more than double 

that of RDX (Table 1.1). A major difference in the two energetic compounds’ properties 

is in the logarithm of their soil organic carbon-water coefficient (KOC), as the log KOC of 

TNT is over a hundred-fold greater than RDX (Table 1.1). For this reason, TNT will 

more strongly adsorb to other organic matter in the soil, whereas RDX mainly moves 

deeply through the soil to the groundwater (Kalderis et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

Table 1.1 Physical and Chemical Properties of RDX and TNT (USEPA 2011) 

Property RDX TNT 

State at Room 

Temperature 

White crystalline solid Yellow, odorless solid 

Molecular Weight 

(g/mol) 

222 227 

Water solubility (mg/L) 42 (at 20°C) 130 (at 25°C) 

Octanol-water partition 

coefficient log(Kow) 

0.87 1.6 

Soil organic carbon-

water coefficient log(Koc) 

1.80 300 

Vapor pressure at 25°°C 

(mm Hg) 

4.0 x 10
-9

 1.99 x 10
-4

 

Henry’s Law Constant  

(atm-m
3
/mol) 

1.96x10
-11

 (at 25°C) 4.57x10
-7

 (at 20°C) 

Molecular Structure  

 

 

1.3.3 Uptake of RDX by Plants, Localization, and Metabolism 

As shown in Table 1.1, RDX and TNT differ in molecular structure, with RDX 

being a nitramine and TNT a nitroaromatic compound. Such structural differences have 

led to differences in their uptake rates and fates in plants (Yoon et al. 2005). Past studies 

of the phytoremediation of RDX and TNT from hydroponic systems have shown that 

95% of TNT was removed from a hydroponic system within the first 24 hours of 

exposure, whereas 71% of RDX was removed within 7 days of the initial exposure 

(Thompson et al. 1998; Thompson et al. 1999).  In addition, uptake of pollutants from 

soil is expected to be much slower than from a hydroponic system because the pollutant 

is less available when in soil (Yoon et al. 2005). The RDX was found to be translocated 

to the leaves of plants after it is taken up from the soil (Schnoor et al. 2006). Some of the 

transformation products found in plants include de-nitrated compounds of RDX such as 

NN

N

NO2

NO2

O2N
NO2

NO2

O2N
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hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-

1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), along with 

other products such as: 4-nitro-2,4-diazabutanal, formaldehyde, methanol, nitrous oxide, 

and nitrite, and higher molecular weight and polar metabolites that have not yet been 

identified (McCormick et al. 1981; Schnoor et al. 2006). These unidentified 

transformation products could be the result of conjugation during the plant’s 

detoxification process (Schnoor et al. 2006). Some conjugated products following plant 

uptake of RDX have been found in reed canary grass, using mass spectral analysis (Just 

and Schnoor 2004). RDX was transformed in plants by 3 main mechanisms: chemical 

reduction, degradation into intermediate metabolites, and complete mineralization to CO2 

(Schnoor et al. 2006).  Figure 1.1 shows the proposed mechanism of RDX transformation 

and degradation.  

 

 

Figure 1.1 Reduction of RDX to nitroso intermediates MNX, DNX, and TNX. Each of 

these products can undergo further anaerobic degradation, ring cleavages, and 

decomposition to methanol (Adapted from McCormick et al. 1981). 

 

Figure 1.2 is a conceptual model of RDX partitioning within a plant. The compound must 

first be taken up into the roots of the plant where it can be translocated into the shoots and 

more apical tissues of the plant. Each tissue has a storage capacity for the compound 

defined by KOC. If the compound is metabolized by the plant or lost through the 

transpiration stream or decomposed due to photolysis, the plant will take up additional 

RDX from solution. It may also be possible for the plant to excrete the compound back 

into the soil or hydroponic media.  
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Figure 1.2 Conceptual model of RDX partitioning in plants.  

1.3.4 Enzymes involved in RDX Degradation 

Nitroreductases are responsible for catalyzing the reduction of the nitro groups in 

RDX into compounds that may be easier to degrade by the plants and could be more or 

less toxic in general (Schnoor et al. 2006). These enzymes have also been indicated in the 

reduction of nitro groups in both HMX and TNT (Schnoor et al. 2006). Other enzymes 

that might be involved in the activation step of metabolism and/or degradation of RDX 

include Cytochrome P450 mono-oxygenases and peroxidases, which are responsible for 

the catalysis of oxidation in HMX, RDX and TNT and also the catalysis of oxidation in 

the reduced derivatives (Schnoor et al. 2006). Glutathione S-transferases are involved in 

the conjugation step of explosive contaminant metabolism, as they catalyze the 

 

RDX 

 RDX
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conjugation of the activated derivatives of these explosives to forms that are much less 

toxic (Schnoor et al. 2006).  

 

1.4 Chrysopogon zizanioides 

Chrysopogon zizanioides (vetiver) is a tropical grass that has been previously 

used in several phytoremediation studies due to its large biomass, marked by its 

expansive root system (extending 3 meters deep) and ability to grow in a wide range of 

extreme soil conditions (Makris et al. 2007). Vetiver is particularly tolerable to extreme 

environmental conditions: frost, heat, sodic, and saline conditions (Makris et al. 2007). In 

particular, Vetiver is both a hydrophyte and a xerophyte, meaning that is not affected by 

flood or drought, respectively (Makris et al. 2007). Such adaptability to grow under 

numerous conditions is ideal for phytoremediation, as many contamination sites are not 

ideal for plant growth. Vetiver has been successful in the uptake of TNT from hydroponic 

media in several lab and greenhouse experiments, and it has therefore been proposed for 

phytoremediation of RDX, due to the similarity in chemical structures (Table 1.1).   

 

1.5 Phytotoxicity of RDX 

Schnoor et al. 2006 tested whether exposure to RDX would be detrimental or 

show toxic effects to poplar. When exposed to 50 mg/L RDX for 24 hours, no visible 

toxicity was observed (Schnoor et al. 2006). The metabolism and degradation of RDX in 

plants varies between different species, so toxicity of RDX exposure will also vary 

among different plant species (Yoon et al. 2005). Phytotoxicity might also be sensitive to 

the length of exposure and should be investigated (Yoon et al. 2005).  

 

1.6 Objectives 

Vetiver has never been used for phytoremediation of RDX. The overall objective 

of the research was to demonstrate the ability of vetiver to uptake RDX from a 

hydroponic solution containing nutrients and RDX. This work will serve as a "proof of 

principle" for future research that will investigate uptake from a soil matrix. Within this 
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objective, was the goal to quantify the uptake of RDX at three different concentration 

conditions: 0.3, 1.1, and 2.26 ppm, by measuring RDX in media sampled from the 

treatments at different times throughout a 30-day exposure to RDX. The sampling 

schedule was designed to provide information on the rate of RDX uptake. Also included 

within this objective was to quantify RDX within the plant tissue. Vetiver was 

periodically harvested, extracted, and the RDX quantified by HPLC with UV detection. 

The distribution and location of RDX in vetiver was determined from plant extracts of 

roots and the lower, middle and top third of shoots. Another objective was to examine 

phytotoxicity of RDX to vetiver and sensitivity to RDX level in the hydroponic solution. 

Phytotoxicity of RDX to vetiver was monitored through observation of toxicity 

symptoms, biomass measurements, and chlorophyll content determination. 

 

 

 

 

 

 

 

 

 

  



 19 

Chapter 2 

Materials and Methods
 

2.1 Growth of Vetiver 

 Chrysopogon zizanioides were obtained from Floraland Farms and Nurseries (St. 

Cloud, FL) as bare root divisions. They were planted immediately upon arrival in 

Sunshine Professional Growing Mix 1, which does not contain added nutrients. Plants 

were grown in the soil for 72 days, extracted from the soil, the roots washed to remove 

soil particles, and then placed in the hydroponic media.  

Figure 2.1 Vetiver growing in soil in greenhouse 

Fifty-seven plants were cleaned of soil and rinsed with distilled deionized water to 

remove the majority of soil from the roots. The plants were then weighed and shoots were 

cut so that each plant had a mass of about 40g each, for a total mass of 120g (3 plants) 

per container in each hydroponic system.  
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Plants acclimatized in hydroponics system, containing 3 liters of half-strength 

Hoagland’s solution for 14 days before treatment with RDX began.  

 

2.2 Hydroponics Set-up 

The experiment was located in the greenhouse partitioned by plastic sheeting. 

Temperatures averaged 70-90°F and a 16-h light/ 8-h dark schedule was used. Six-liter 

plastic Sterilite© containers were covered in black plastic to limit photolysis of RDX in 

the hydroponic media. A small hole was drilled into the side of the container to fit a piece 

of aquarium tubing, to which an aquarium pump was connected. Three 2-in diameter 

holes were drilled into the lid of the container to expose shoots of the vetiver. Each 

system contained 3 L of half-strength Hoaglands solution for the nutrient media.  

 

 

Figure 2.2: Hydroponics set-up.  
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2.3 RDX Treatments 

2.3.1 Chemicals 

1000ug/mL ± 5% Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in acetonitrile 

was purchased from ChemService (99% purity). HPLC Grade solvents were used during 

the HPLC analyses. 

 

2.3.2 Treatment Concentrations 

A 1-L stock solution of 40 ppm RDX was prepared with distilled deionized water 

that was filtered through the MilliQ system. The RDX was purchased as a 1000 μg mL
-1

 

solution (99% purity) in acetonitrile (ChemService, Westchester, PA). Concentrations of 

2.26, 1.1, and 0.3 ppm were used for the RDX treatments, all of which were prepared 

from the 40 ppm RDX stock solution by adding the appropriate amount of RDX stock 

solution to the Hoagland’s nutrient media. The 30-day experimental period began upon 

addition of the 40 ppm RDX stock to the hydroponics system. The RDX treatments were 

prepared with fresh Hoagland’s nutrient media day 1 of the experimental period. Similar 

concentrations of RDX treatments have been used in previous hydroponic studies of 

RDX remediation. 

  

2.3.3 Replicates 

Three replicates of each treatment were sampled.  Three replicates of a control 

containing no RDX was also included along with a control at each of the RDX 

concentrations with no plants. Another control containing acetonitrile without RDX was 

sampled to evaluate the toxicity of acetonitrile on the plant. The same quantity of 

acetonitrile that was in the 0.3, 1.1, and 2.26 ppm RDX treatment was added to the 

acetonitrile controls: 18.75, 75, and 150mL 40ppm acetonitrile respectively. The 

treatments were arranged so that a randomized block experimental design was achieved.  
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2.4 Media Samples 

2.4.1 Sample Collection 

Nutrient media (2 mL) was collected from each treatment and the control 

according to the following schedule: every 6 h for the first 72 h, - every 12 h for days 4-

10, and every 24 hours for the remainder of the 30-d exposure period. Samples were 

stored at 4°C until HPLC analysis.  

 

2.4.2 Sample Preparation for HPLC 

Immediately prior to HPLC analysis, 1 mL of HPLC grade acetonitrile (Fisher 

Scientific, Pittsburgh, PA) was added to 1mL of media sample. Samples were shaken for 

about 1 min and filtered through a 0.45 μm nylon syringe filter (Fisher Scientific). 

Filtered samples were stored in microcentrifuge tubes immediately prior to analysis.  

   

2.5 Plant Samples 

2.5.1 Harvesting Vetiver 

Plants were harvested by removing them from the appropriate RDX treatment. 

The plants were rinsed with DDI Millipore water to remove RDX residues, blotted dry, 

and weighed. The length of the shoots and roots of each plant were recorded. The roots 

were removed from the shoots and weighed separately. Root tissue was was stored in 50-

mL centrifuge tubes at -80°C. Plant shoots were cut into thirds and stored in 50-mL 

centrifuge tubes at -80°C.  

 

2.5.2 Plant Sample Processing and Extraction 

To extract RDX from plant tissue, the frozen plant samples were allowed to come 

to room temperature. Plants samples were prepared for extraction by cutting the plants 

into small pieces, freeze-drying with liquid nitrogen, and grinding the pieces to a fine 

dust with a mortar and pestle. The ground plant tissue was weighed to obtain the dry 

mass of the plant sample. A 2 g sub-sample of the ground plant tissue was suspended in 8 
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mL of HPLC grade acetonitrile and mixed for 1 min using a Vortex mixer. Samples were 

stored overnight at 4°C, sonicated the next day at 25°C for 17 hours, and centrifuged at 

2500 rpm for 5 min in preparation for sample cleanup.  

Plant extracts (2 mL) were eluted through Pasteur pipettes containing 0.25 g 

Florisil and 0.25 g Alumina, which were activated at 130°C, to remove chlorophyll and 

plant pigments that interfere with UV detection of RDX. The RDX was eluted from 

column with 2 mL HPLC grade acetonitrile and the extract filtered through a 0.45μm 

Nylon syringe filter.  

 

2.5.3 HPLC Analysis of Media and Plant Samples 

Hydroponic media samples and plant samples were analyzed on a Beckman 

Coulter System Gold HPLC (Beckman Coulter, Brea, CA) with a 125 Solvent module 

and 166 UV detector. A 5 μm LC-18-DB Supelcosil column (25 cm  4.6 mm ID) ) was 

used for the analyses (Supelco, St. Louis, MO). Organic species were resolved with an 

isocratic elution method using a 50:50 mixture of HPLC-grade methanol and DDI 

Millipore filtered water as the mobile phase. The RDX absorbance at 254 nm was 

measured with a UV detector. A 5-pt calibration curve was generated each day to 

quantify the RDX in media and plant samples. Calibration standards of RDX in 

acetonitrile were prepared from the stock solution (1000 μg mL
-1

) at levels of 0.5, 1, 2, 3, 

and 4 ppm.  

 

2.6 Plant Growth and Phytotoxicity Analysis  

 Growth parameters (i.e., plant biomass and root and shoot length) were measured 

and recorded as a means to determine plant health. Length, fresh weight and dry weight 

of roots and shoots were measured on days 0, 10, 20, and 30 for plants harvested during 

the experiment. Initial and final measurements of the growth parameters were recorded 

for all plants in the experiment. Spots of necrosis and chlorosis that indicate phytotoxic 

reactions were recorded and documented with photographs.  
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 Whole plant chlorophyll content was determined by processing the middle third 

of a shoot. The shoot was ground to a fine powder and a 30-mg sub-sample was added to 

10 mL of 80% acetone in DDI Millipore water. The sample was then centrifuged at 

3000x g for 5 minutes. Chlorophyll was measured spectrophotometrically at 645 and 663 

nm and quantified using the following equation: 

 

Total Chlorophyll = (20.2 x A645 + 8.02 x A663) x dilution factor (Vila et al. 2007) 
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Chapter 3 

Results and Discussion 

 

3.1 RDX loss from Hydroponic Media 

 

 The RDX was rapidly taken up from media containing vetiver within the first 18 

hours of exposure. Levels of RDX in the 2.26 ppm, 1.1 ppm, and 0.3 ppm RDX 

treatments were reduced to 0.68 ± 0.059, 0.32 ± 0.039, and 0.10 ± 0.0014 ppm 

respectively, during the first 18 hours of exposure (Figure 3.3). The greatest decrease in 

concentration was observed during the first 6 hours of RDX exposure. Concentrations of 

RDX in the 2.26 ppm, 1.1 ppm, and 0.3 ppm RDX treatments were reduced to 0.97 ± 

0.027, 0.61 ± 0.021, and 0.20 ± 0.043 ppm respectively, (Figure 3.3). An approximate 

50% loss in RDX from the initial amount in the hydroponic media is indicated by 

comparing HPLC chromatograms from the 2.26 ppm treatments at 0 h exposure and 6 h 

exposure (Figures 3.1, 3.2). However, a similar rapid decrease in RDX concentration was 

also seen in the controls, which did not contain plants (Figure 3.3-6). 

 After the rapid initial decrease in RDX concentration during the first 18 h, losses 

of RDX from the media are more gradual, becoming constant, and then increasing after 4 

days (Figure 3.7).  Media was not added during the first 10 d of the experiment, and thus, 

increases in RDX levels are attributed to evaporation of hydroponic media. The RDX 

behaved similarly in controls at all RDX exposure concentrations (Figure 3.7-10). 

Concentrations of RDX in the hydroponic media continued to increase over the 

remainder of the 30 d experiment in treatments with and without vetiver (Figure 3.11-14). 

Figure 3.15 shows the results of variation in RDX concentration in the hydroponic media 

at all of the concentrations, with and without plants, over the entire experimental period. 
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Figure 3.1 Chromatogram of media sample taken at  0 h from 2 ppm RDX treatment. The 

measured concentration was 2.32ppm.  

 

Figure 3.2 Chromatogram of media sample taken at 6 h from 2 ppm RDX treatment. The 

measured concentration was 0.928 ppm. 
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Figure 3.3 Measured concentrations of RDX in hydroponic media during the first 18 h of 

the experiment. Error bars represent the standard deviation for triplicate media samples.  

 

 
Figure 3.4 Concentrations of RDX in hydroponic media containing 0.3 ppm RDX 

treatments with and without plants. Error bars represent the standard deviation for 

triplicate media samples. 
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Figure 3.5 Concentrations of RDX in hydroponic media containing 1.1 ppm RDX 

treatments with and without plants. Error bars represent the standard deviation for 

triplicate media samples. 

 
Figure 3.6 Concentrations of RDX in hydroponic media containing 2.26 ppm RDX 

treatments with and without plants. Error bars represent the standard deviation for 

triplicate media samples. 
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Figure 3.7 Concentrations of RDX in media samples from day 1 through day 10. Error 

bars represent the standard deviation for triplicate media samples. 

 

 
Figure 3.8 Loss of RDX from Hydroponic Media of 0.3 ppm RDX Treatment. Error bars 

represent standard deviation between triplicate media samples. 
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Figure 3.9 Loss of RDX from Hydroponic Media of 1.1 ppm RDX Treatment. Error bars 

represent standard deviation between triplicate media samples. 

 

 
Figure 3.10 Loss of RDX from Hydroponic Media of 2.26 ppm RDX Treatment. Error 

bars represent standard deviation between triplicate media samples. 
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Figure 3.11 RDX in Media Samples Day 1-30. Error bars represent the standard deviation 

between duplicate samples.  

 

 
Figure 3.12 Loss of RDX from Hydroponic Media of 0.3 ppm RDX Treatment. Error 

bars represent standard deviation between duplicate media samples. 
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Figure 3.13 Loss of RDX from Hydroponic Media of 1.1 ppm RDX Treatment. Error 

bars represent standard deviation between duplicate media samples. 

 

 
Figure 3.14 Loss of RDX from Hydroponic Media of 2.26 ppm RDX Treatment. Error 

bars represent standard deviation between duplicate media samples. 
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Figure 3.15 Compiled Results of RDX Loss from Hydroponic Media. Error bars 

represent standard deviation between triplicate media samples for days 1-10 and 

duplicate media samples for days 10-30.  

 

Henry’s law constants for RDX and water at 25°C are 2.0 x 10
-11 

atm-m
3
/mol and 

5.63 x 10
-7 

atm-m
3
/mol

 
, respectively, indicating that water is more volatile than RDX, 

and thus, the concentration of RDX in water will actually increase as water evaporates 

(ATSDR 1995; Thomas 1982). By assuming RDX did not evaporate from the hydroponic 

media, levels of RDX in the plant tissue were used to calculate the theoretical loss of 

RDX from the hydroponic media (Figure 3.16; Table 3.1).  The values were calculated by 

dividing the mass of RDX in the plant at 10, 20, and 30 d by 3L (i.e., initial volume of 

hydroponic media) and subtracting this value from the initial RDX concentration of the 

hydroponic media (Table 3.1).  
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Figure 3.16 Theoretical Loss of RDX from Hydroponic media.  

 

Table 3.1: Theoretical Uptake Values 

Days 0.3 ppm RDX  1.1 ppm RDX  2.26 ppm RDX 

 mg of 

RDX in 

Plant  

Calculated 

Concentration 

RDX 

remaining in 

Media (ppm) 

mg of 

RDX in 

Plant 

Calculated 

Concentration 

RDX 

remaining in 

Media (ppm) 

mg of 

RDX 

in 

Plant 

Calculated 

Concentration 

RDX 

remaining in 

Media (ppm) 

10 0.01517 

 

0.2949 

 

0.1208 

 

1.059 

 

0.3141 

 

2.155 

 

20 0.06445 

 

0.2785 

 

0.2987 

 

1.000 

 

0.6150 

 

2.055 

 

30 

 

0.03849 0.2872 0.1857 1.038 0.7131 2.022 

 

3.2 RDX in Vetiver 

3.2.1 Plant Uptake of RDX 

Evaporation of the hydroponic media precluded quantification of the uptake of 

RDX via loss from the hydroponic media. Instead, uptake of RDX was quantified 

through measurement of RDX in the harvested plants. The large peak eluting at 3.550 
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min in the HPLC chromatogram was identified as RDX through addition of an RDX 

standard to a media sample (Figure 3.17). The two smaller peaks eluting at 4.317 and 

5.050 min were only observed in plant extracts and might be degradation products of 

RDX, which are less polar than RDX and expected to elute later. Mass spectral analysis 

of the vetiver extracts would be necessary for positive identification of degradation 

products. 

 
Figure 3.17 Chromatogram of root extract of Vetiver after 30 d exposure to 2.26 ppm 

RDX. Retention time of RDX is 3.550 min.  

 

3.2.2 Location of RDX in Plant 

The amount of RDX in plants harvested at 10, 20, and 30 d the was located in 

roots and shoots in nearly equal amounts (Figure 3.18). Greater than 75% of the RDX in 

plants harvested after 10 d of exposure was located in the roots and lower third of vetiver 

for each RDX treatment (Figure 3.19). Very little RDX made it to the upper third of the 

vetiver shoots (Figure 3.19). For plants harvested on day 20, the majority of RDX was 

located in the roots and lower third of vetiver shoots; however, more RDX was found in 

the middle and upper portion of the shoot tissue than was found in the 10 and 30 d 

exposures (Figure 3.20). Plants harvested after 30 d exhibited very similar results to 

plants exposed for 10 d (Figure 3.21). 
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Figure 3.18 RDX in Plant Tissue after 30 Days. Error bars represent standard deviation 

between triplicate plant samples 
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Figure 3.19 Mass Balance of RDX in Plant Tissue after 10-Day Exposure. One plant 

from each concentration was harvested and analyzed at this time point.  
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Figure 3.20 Mass Balance of RDX in Plant Tissue after 20-Day Exposure. One plant 

from each concentration was harvested and analyzed at this time point. 
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Figure 3.21 Mass Balance of RDX in Plant Tissue after 30-Day Exposure Three plants 

from each concentration were harvested and analyzed at this time point.  

 



 38 

3.2.3 Mass Balance of RDX 

The ratio, expressed as a percentage, of the mass of RDX that was taken up by the 

plants relative to the mass of RDX initially present in the hydroponic media after 10, 20, 

and 30 days of exposure is reported in Tables 3.2, 3.3, and 3.4. At 30 d of exposure to the 

0.3, 1.1, and 2.26 ppm treatments 13.12%, 18.34% and 24.22%, respectively, of the 

initial RDX in the hydroponic media was found in plant tissue (Table 3.5). Three plant 

replicates from different containers of each treatment were harvested on day 30 and the 

averages and standard deviation of the RDX (%) in the plant tissues are presented in 

Table 3.6.  

 

Table 3.2: 10 Day RDX Exposure 

Initial RDX 

Concentration 

in Media 

(mg/L) 

mg of RDX in 

treatment 

Total mg RDX 

in Plant 

Extracts 

% RDX in 

Plant Tissues 

0.300 0.900 0.01517 1.686 

1.10 3.30 0.1208 3.6559 

2.26 6.78 0.3141 4.634 

 

Table 3.3: 20 Day RDX Exposure 

Initial RDX 

Concentration 

in Media 

(mg/L) 

mg of RDX in 

treatment 

Total mg RDX 

quantified in 

Plant Extracts 

% RDX in 

Plant Tissues 

0.300 0.900 0.06445 7.161 

1.10 3.30 0.2987 9.051 

2.26 6.78 0.6150 9.071 

 

Table 3.4: 30 Day RDX Exposure 

Initial RDX 

Concentration 

in Media 

(mg/L) 

mg of RDX in 

treatment 

Total mg RDX 

quantified in 

Plant Extracts 

% RDX in 

Plant Tissues 

0.300 0.900 0.03848 4.275 

1.10 3.30 0.1856 5.626 

2.26 6.78 0.7131 10.52 
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Table 3.5: Total Uptake of RDX from Treatments Harvested at 10, 20, and 30 

Days 

Initial RDX 

Concentration 

in Media 

(mg/L) 

mg of RDX in 

treatment 

Total mg RDX 

quantified in 

Plant Extracts 

% RDX in 

Plant Tissues 

0.300 0.900 0.1181 13.12 

1.10 3.30 0.6051 18.34 

2.26 6.78 1.642 24.22 

 

Table 3.6: Average 30 Day RDX Exposure 

Initial RDX 

Concentration 

in Media 

(mg/L) 

mg of RDX in 

treatment 

Total mg RDX 

quantified in 

Plant Extracts 

% RDX in 

Plant Tissues ± 

stdev 

0.320 0.960 0.08046 8.288 ± 3.801 

1.12 3.36 0.3147 9.358 ± 5.199 

2.29 6.86 1.009 14.66 ± 6.104 

 

 

3.2.4 Bioconcentration Factor  

The bioconcentration factor (BCF) is a measure of the accumulation of a chemical 

in the plant tissue relative to the concentration in the surrounding environment. The BCF 

was calculated by dividing the concentration of RDX in the plant tissue by the 

concentration in the hydroponic media at harvest. The BCFs for all treatments at 30 d 

were relatively low, with the 2.26 ppm treatment exhibiting the lowest BCF of 0.098 

(Figure 3.22). 
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Figure 3.22 : Bioconcentration Factor of RDX in vetiver tissue harvested at 30 days. 

Error bars represent ± 1 standard deviation between triplicate plant samples.  

 

3.2.5 Translocation Index 

The translocation index (TLI) of RDX, expressed as a percent, is the mass of 

RDX located in the shoots of vetiver relative to the mass of RDX in the entire plant. The 

TLIs for all treatments at 30 d is presented in Figure 3.23.  The TLIs for the treatments 

were similar and were 53.2%, 49.9%, and 53.4% for the 0.3, 1.1, and 2.26 ppm RDX 

treatments, respectively (Figure 3.23). 
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Figure 3.23 Translocation Index of RDX in vetiver. Error bars represent ± 1 standard 

deviation between triplicate plant samples. 

3.3 Partitioning Coefficients of RDX 

 The log KOW and log KOC values for RDX in vetiver were calculated for the 

harvested plants for each treatment and are presented in Table 3.7. Values were 

calculated according to the following (Di Toro 1985; US EPA 1996): 

 

Koc= ((mg RDX in plant)/(kg of Organic Carbon in plant))/ (mg RDX L
-1

media)

 

log KOW= (log KOC -0.00028)/0.983 

 

The level of OC in vetiver is approximately 50% of the dry plant matter (Singh 2011) 

Table 3.7: Calculated KOC  and KOW Values 

RDX Treatment (ppm) Mean log(KOC) ± stdev Mean log(KOW) ± stdev 

0.3 0.869 ± 0.232 1.80 ± 0.481 

1.1 0.896 ± 0.201 1.85 ± 0.417 

2.26 1.20 ± 0.363 2.48 ± 0.752 
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3.4 Phytotoxicity of RDX  

 

3.4.1 Plant Biomass 

 
 Each individual plant was weighed prior to the start of the experiment and at the 

end of the 30 d experimental period to determine whether or not RDX had any negative 

or positive effects on the plant growth. The greatest average loss in plant biomass after 30 

days was observed in control plants, with an average loss of 13.8g of plant biomass 

(Figure 3.25). Plants that were harvested at 10, 20, and 30 days were also measured at 

their harvest point. Similarly, the control plants showed the greatest loss in biomass at 20 

and 30 days (Figure 3.24). 

 

 
Figure 3.24 Loss in biomass of vetiver exposed to RDX for plants harvested at 10, 20 and 

30 days of exposure. 
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Figure 3.25 Average loss in Plant Biomass after 30 Day Exposure to RDX. Includes all 

plants harvested at the 30-day endpoint of the experiment. 

 

3.4.2 Chlorophyll Content 

 
 Chlorophyll content did not decrease with increasing exposure to RDX and 

control plants (5.02 ± 4.24) had slightly lower chlorophyll contents than plants exposed 

to RDX (Figure 3.26).  Chlorophyll contents were 7.58 ± 2.12, 7.25 ± 2.68, and 6.51 ± 

1.44 for the 0.3 ppm, 1.1 ppm, and 2.26 ppm RDX treatments, respectively. 
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Figure 3.26 Average Chlorophyll Content after 30 day exposure to RDX. Error bars 

represent ± 1 standard deviation between triplicate plant samples. 
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Chapter 4 

Conclusions 

 
 

The study represents a preliminary investigation of the uptake of RDX by vetiver 

grown hydroponically. Measuring uptake of an organic chemical by plants grown 

hydroponically presents several challenges: (1) organic chemicals are hydrophobic and 

readily sorb to surfaces, (2) evaporation of hydroponic media is exacerbated by forced 

aeration and can leave plant roots exposed to air during long exposures, (3) accounting 

for mass losses of hydroponic media during long exposures is difficult and precludes 

monitoring plant uptake by measuring chemical losses in the hydroponic media, and (4) 

replenishing hydroponic media during long exposures might compromise results due to 

an inability to supply the same level of nutrients to all plant treatments. A rapid and 

similar decrease in RDX concentration in controls and plant exposures was observed 

within the first 18 h of the experiment with the greatest loss occurring during the first 6 

hours. However, RDX concentrations returned to initial levels in about 30 hr and began 

to gradually increase throughout the remainder of the experiment. Although RDX is quite 

hydrophilic, it was apparently sorbed to container walls within the first 18 h and then 

desorbed from container walls after about 30 h. The gradual increase in RDX 

concentration throughout the remainder of the experiment is attributed to evaporation of 

water, which is more volatile than RDX.  

A better measure of the uptake of RDX from long exposures in hydroponic media 

is through quantification of RDX in exposed plants. The mass of RDX in the shoot tissue 

of vetiver was about equal to the mass of RDX in root tissue of vetiver, with slightly 

more RDX being found root tissue. The result was contrary to other studies that found 

RDX more readily translocated to apical parts of plants.  

Evaporation of water from the treatment containers precluded a measurement of 

the loss of RDX from the hydroponic solutions with time. Accurately replenishing the 

hydroponic solution would be difficult and might also lead to unequal levels of nutrients 

in the various treatment containers. However, water is more volatile than RDX, and thus, 
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the theoretical loss in RDX from hydroponic media was calculated using the measured 

mass of RDX in the plant tissue and measured concentration of RDX in the hydroponic 

media for different durations of exposure.  If replicates were harvested along the way, the 

level of uncertainty would have been less; however, due to experimental constraints this 

was not possible.  

Measuring the level of RDX in plants and hydroponic media for different 

durations of exposure provided data to calculate log KOC and log KOW for RDX. The log 

KOC and log KOW derived from the experiment were 0.896 ± 0.201 and 1.85 ± 0.417 

(derived from 1.1ppm treatment data), respectively, and similar the log KOC and log KOW 

values of 1.80 and 0.87, respectively, reported in the literature (Table 1.1). The result 

confirms the behavior of RDX in this study to be similar to what is to be expected on the 

basis of the physical and chemical properties of RDX. Hydrophilic compounds are not 

likely to pass through the hydrophobic membrane of root tissue and will instead stay in 

solution. Compounds with log Kow < 1.8 are expected to be too hydrophilic to be taken up 

by roots (Yoon et al. 2005). The log Kow of RDX determined here was approximately 2 

and is in the range of being too hydrophilic for effective uptake by plant roots.  The RDX 

did accumulate in vetiver tissue: however, the rate of RDX uptake by plants might be 

much slower than the rate of uptake of more hydrophobic substances. 

Similar TLIs were observed for the 3 RDX treatments, with the 1 ppm RDX 

treatment showing the greatest translocation index. The BCFs were low for all RDX 

treatments and exposure durations, which might be due to degradation of RDX in plant 

tissue. Major degradation products of RDX are MNX, DNX, and TNX. The derivates are 

denitrated, and thus, are slightly less polar than RDX and would have longer HPLC 

elution times than RDX. In the HPLC chromatograms of plant extracts in this study, 

peaks were observed at 4.3 and 5.1 min. On a C18 column, peaks for RDX derivatives 

follow the RDX peak and elute sequentially, between 4 and 6 minutes (Felt et al. 2003). 

Mass spectral analysis of the vetiver extracts is required to positively identify the 

degradation products.  
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A loss in biomass was observed in plants exposed to all three concentrations of 

RDX. However, plants grown as controls exhibited a greater loss in biomass indicating a 

link between the RDX exposure and loss of plant biomass might not exist.   

Results from chlorophyll analyses did not reveal a trend of increasing phytotoxicity with 

exposure to increasing concentrations of RDX. Instead, control plants showed less 

chlorophyll content than those exposed to RDX, which might be related to other 

environmental factors and greenhouse conditions. For example, containers in different 

locations on the benchtop experienced different evaporation rates. The placement of plant 

treatment containers was randomized; however reduction in hydroponic solution and 

nutrients could cause chlorosis. Phytotoxicity of vetiver to RDX for 0.3, 1.1 and 2.26 

ppm treatments was not observed; however higher concentrations might elicit a 

phytotoxic response.  
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