68 research outputs found

    False alarm reduction in critical care

    Get PDF
    High false alarm rates in the ICU decrease quality of care by slowing staff response times while increasing patient delirium through noise pollution. The 2015 PhysioNet/Computing in Cardiology Challenge provides a set of 1250 multi-parameter ICU data segments associated with critical arrhythmia alarms, and challenges the general research community to address the issue of false alarm suppression using all available signals. Each data segment was 5 minutes long (for real time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 seconds of data after the alarm was triggered. A total of 750 data segments were made available for training and 500 were held back for testing. Each alarm was reviewed by expert annotators, at least two of whom agreed that the alarm was either true or false. Challenge participants were invited to submit a complete, working algorithm to distinguish true from false alarms, and received a score based on their program's performance on the hidden test set. This score was based on the percentage of alarms correct, but with a penalty that weights the suppression of true alarms five times more heavily than acceptance of false alarms. We provided three example entries based on well-known, open source signal processing algorithms, to serve as a basis for comparison and as a starting point for participants to develop their own code. A total of 38 teams submitted a total of 215 entries in this year's Challenge. This editorial reviews the background issues for this challenge, the design of the challenge itself, the key achievements, and the follow-up research generated as a result of the Challenge, published in the concurrent special issue of Physiological Measurement. Additionally we make some recommendations for future changes in the field of patient monitoring as a result of the Challenge.National Institutes of Health (U.S.) (Grant R01-GM104987)National Institute of General Medical Sciences (U.S.) (Grant U01-EB-008577)National Institutes of Health (U.S.) (Grant R01-EB-001659

    Single-modal and Multi-modal False Arrhythmia Alarm Reduction using Attention-based Convolutional and Recurrent Neural Networks

    Full text link
    This study proposes a deep learning model that effectively suppresses the false alarms in the intensive care units (ICUs) without ignoring the true alarms using single- and multimodal biosignals. Most of the current work in the literature are either rule-based methods, requiring prior knowledge of arrhythmia analysis to build rules, or classical machine learning approaches, depending on hand-engineered features. In this work, we apply convolutional neural networks to automatically extract time-invariant features, an attention mechanism to put more emphasis on the important regions of the input segmented signal(s) that are more likely to contribute to an alarm, and long short-term memory units to capture the temporal information presented in the signal segments. We trained our method efficiently using a two-step training algorithm (i.e., pre-training and fine-tuning the proposed network) on the dataset provided by the PhysioNet computing in cardiology challenge 2015. The evaluation results demonstrate that the proposed method obtains better results compared to other existing algorithms for the false alarm reduction task in ICUs. The proposed method achieves a sensitivity of 93.88% and a specificity of 92.05% for the alarm classification, considering three different signals. In addition, our experiments for 5 separate alarm types leads significant results, where we just consider a single-lead ECG (e.g., a sensitivity of 90.71%, a specificity of 88.30%, an AUC of 89.51 for alarm type of Ventricular Tachycardia arrhythmia

    Computational approaches to alleviate alarm fatigue in intensive care medicine: A systematic literature review

    Get PDF
    Patient monitoring technology has been used to guide therapy and alert staff when a vital sign leaves a predefined range in the intensive care unit (ICU) for decades. However, large amounts of technically false or clinically irrelevant alarms provoke alarm fatigue in staff leading to desensitisation towards critical alarms. With this systematic review, we are following the Preferred Reporting Items for Systematic Reviews (PRISMA) checklist in order to summarise scientific efforts that aimed to develop IT systems to reduce alarm fatigue in ICUs. 69 peer-reviewed publications were included. The majority of publications targeted the avoidance of technically false alarms, while the remainder focused on prediction of patient deterioration or alarm presentation. The investigated alarm types were mostly associated with heart rate or arrhythmia, followed by arterial blood pressure, oxygen saturation, and respiratory rate. Most publications focused on the development of software solutions, some on wearables, smartphones, or headmounted displays for delivering alarms to staff. The most commonly used statistical models were tree-based. In conclusion, we found strong evidence that alarm fatigue can be alleviated by IT-based solutions. However, future efforts should focus more on the avoidance of clinically non-actionable alarms which could be accelerated by improving the data availability

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Deep Neuroevolution: Training Deep Neural Networks for False Alarm Detection in Intensive Care Units

    Get PDF
    We present a neuroevolution based-approach for training neural networks based on genetic algorithms, as applied to the problem of detecting false alarms in Intensive Care Units (ICU) based on physiological data. Typically, optimisation in neural networks is performed via backpropagation (BP) with stochastic gradient-based learning. Nevertheless, recent works have shown promising results in terms of utilising gradient-free, population-based genetic algorithms, suggesting that in certain cases gradient-based optimisation is not the best approach to follow. In this paper, we empirically show that utilising evolutionary and swarm intelligence algorithms can improve the performance of deep neural networks in problems such as the detection of false alarms in ICU. In more detail, we present results that improve the state-of-the-art accuracy on the corresponding Physionet challenge, while reducing the number of suppressed true alarms by deploying and adapting Dispersive Flies Optimisation (DFO)

    Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs

    Get PDF
    False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise

    Assessing effect of beat detector on detection dependent signal quality indices

    Get PDF
    Patient monitoring algorithms which use multimodal physiological waveforms are needed to reduce alarm fatigue by alarming only for physiologic events and not signal artifacts. When combining information from multiple ECG signals, computational approaches that automatically identify artifacts in ECG signals play an important role. Signal quality indices (SQIs) have been derived which can differentiate between ECG signal artifacts and normal QRS morphology. Some of these SQIs are derived using beat detections and might be affected by the beat detector used. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied the effect of beat detector on previously reported ECG SQIs derived using beat detections. We found that, while being affected by the beat detector, some of these SQIs can predict beat detector failure. Using beat detector specific SQIs can improve the designs of robust monitoring algorithms

    Automatic ECG signal quality assessment

    Get PDF
    Abstract. The quality assessment of signal has been a research topic for many years, as it is mainly related to the problem of the false alarms. Automatic quality detection/assessment and classification of signals can play a vital role in the development of robust unsupervised electrocardiogram (ECG). The development of efficient algorithms for the quality control of ECG recordings is essential to improve healthcare now. ECG signal can be intermixed with many kinds of unwanted noises. It is an important task to assess the quality of the ECG signal for further biomedical inspections. To make that happen, we made an algorithm that is efficient and uses some basic quality features to classify the ECG signals. It is a very effective way to acquire a good quality ECG signal in real-time by unskilled personnel for instance in rural areas there is not enough expertise in this field. By using this method, they can quickly know if the ECG signal is acceptable or unacceptable for further inspections. The method is used to assess the quality of the ECG signals in the training set of the Physionet/Computing in Cardiology Challenge 2011, giving a correct interpretation of the quality of the ECG signals of 93.08% which corresponded to a sensitivity of 96.53% and a specificity of 86.76%
    corecore