52 research outputs found

    Posets arising as 1-skeleta of simple polytopes, the nonrevisiting path conjecture, and poset topology

    Full text link
    Given any polytope PP and any generic linear functional c{\bf c} , one obtains a directed graph G(P,c)G(P,{\bf c}) by taking the 1-skeleton of PP and orienting each edge e(u,v)e(u,v) from uu to vv for c(u)<c(v){\bf c} (u) < {\bf c} ( v). This paper raises the question of finding sufficient conditions on a polytope PP and generic cost vector c{\bf c} so that the graph G(P,c)G(P, {\bf c} ) will not have any directed paths which revisit any face of PP after departing from that face. This is in a sense equivalent to the question of finding conditions on PP and c{\bf c} under which the simplex method for linear programming will be efficient under all choices of pivot rules. Conditions on PP and c{\bf c} are given which provably yield a corollary of the desired face nonrevisiting property and which are conjectured to give the desired property itself. This conjecture is proven for 3-polytopes and for spindles having the two distinguished vertices as source and sink; this shows that known counterexamples to the Hirsch Conjecture will not provide counterexamples to this conjecture. A part of the proposed set of conditions is that G(P,c)G(P, {\bf c} ) be the Hasse diagram of a partially ordered set, which is equivalent to requiring non revisiting of 1-dimensional faces. This opens the door to the usage of poset-theoretic techniques. This work also leads to a result for simple polytopes in which G(P,c)G(P, {\bf c}) is the Hasse diagram of a lattice L that the order complex of each open interval in L is homotopy equivalent to a ball or a sphere of some dimension. Applications are given to the weak Bruhat order, the Tamari lattice, and more generally to the Cambrian lattices, using realizations of the Hasse diagrams of these posets as 1-skeleta of permutahedra, associahedra, and generalized associahedra.Comment: new results for 3-polytopes and spindles added; exposition substantially improved throughou

    Celebrating Loday’s associahedron

    Get PDF
    We survey Jean-Louis Loday’s vertex description of the associahedron, and its far reaching influence in combinatorics, discrete geometry, and algebra. We present in particular four topics where it plays a central role: lattice congruences of the weak order and their quotientopes, cluster algebras and their generalized associahedra, nested complexes and their nestohedra, and operads and the associahedron diagonal

    Simplex and Polygon Equations

    Full text link
    It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a "mixed order." We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of "polygon equations" realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the NN-simplex equation to the (N+1)(N+1)-gon equation, its dual, and a compatibility equation
    corecore