16 research outputs found

    The Peri-Saccadic Perception of Objects and Space

    Get PDF
    Eye movements affect object localization and object recognition. Around saccade onset, briefly flashed stimuli appear compressed towards the saccade target, receptive fields dynamically change position, and the recognition of objects near the saccade target is improved. These effects have been attributed to different mechanisms. We provide a unifying account of peri-saccadic perception explaining all three phenomena by a quantitative computational approach simulating cortical cell responses on the population level. Contrary to the common view of spatial attention as a spotlight, our model suggests that oculomotor feedback alters the receptive field structure in multiple visual areas at an intermediate level of the cortical hierarchy to dynamically recruit cells for processing a relevant part of the visual field. The compression of visual space occurs at the expense of this locally enhanced processing capacity

    Chaotic Time Series Prediction using Spatio-Temporal RBF Neural Networks

    Full text link
    Due to the dynamic nature, chaotic time series are difficult predict. In conventional signal processing approaches signals are treated either in time or in space domain only. Spatio-temporal analysis of signal provides more advantages over conventional uni-dimensional approaches by harnessing the information from both the temporal and spatial domains. Herein, we propose an spatio-temporal extension of RBF neural networks for the prediction of chaotic time series. The proposed algorithm utilizes the concept of time-space orthogonality and separately deals with the temporal dynamics and spatial non-linearity(complexity) of the chaotic series. The proposed RBF architecture is explored for the prediction of Mackey-Glass time series and results are compared with the standard RBF. The spatio-temporal RBF is shown to out perform the standard RBFNN by achieving significantly reduced estimation error.Comment: Published in: 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). arXiv admin note: substantial text overlap with arXiv:1908.0132

    Peri-saccadic compression to two locations in a two-target choice saccade task

    Get PDF
    When visual stimuli are presented at the onset of a saccadic eye movement they are seen compressed onto the target location of the saccade. This peri-saccadic compression is believed to result from internal feedback pathways between oculomotor and visual areas of the brain. This feedback enhances vision around the saccade target at the expense of localization ability in other regions of the visual field. Although saccades can be targeted at only one object at a time, often multiple potential targets are available in a visual scene, and the oculomotor system has to choose which target to look at. If two targets are available, preparatory activity builds-up at both target locations in oculomotor maps. Here we show that, in this situation, two foci of compression develop, independent of which of the two targets is eventually chosen for the saccade. Our results suggest that theories that use oculomotor feedback as efference copy signals for upcoming eye movements should take the possibility into account that multiple feedback signals from potential targets may occur in parallel before the execution of a saccade

    Mislocalization of Visual Stimuli: Independent Effects of Static and Dynamic Attention

    Get PDF
    Shifts of visual attention cause systematic distortions of the perceived locations of visual objects around the focus of attention. In the attention repulsion effect, the perceived location of a visual target is shifted away from an attention-attracting cue when the cue is presented before the target. Recently it has been found that, if the visual cue is presented after the target, the perceived location of the target shifts toward the location of the following cue. One unanswered question is whether a single mechanism underlies both attentional repulsion and attraction effects. We presented participants with two disks at diagonal locations as visual cues and two vertical lines as targets. Participants were asked to perform a forced-choice task to judge targets' positions. The present study examined whether the magnitude of the repulsion effect and the attraction effect would differ (Experiment 1), whether the two effects would interact (Experiment 2), and whether the location or the dynamic shift of attentional focus would determine the distortions effects (Experiment 3). The results showed that the effect size of the attraction effect was slightly larger than the repulsion effect and the preceding and following cues have independent influences on the perceived positions. The repulsion effect was caused by the location of attnetion and the attraction effect was due to the dynamic shift of attentional focus, suggesting that the underlying mechanisms for the retrospective attraction effect might be different from those for the repulsion effect

    Active sampling in visual search is coupled to the cardiac cycle

    Get PDF
    Recent research has demonstrated that perception and reasoning vary according to the phase of internal bodily signals such as heartbeat. This has been shown by locking the presentation of sensory events to distinct phases of the cardiac cycle. However, task-relevant information is not usually encountered in such a phase-locked manner nor passively accessed, but rather actively sampled at one's own pace. Moreover, if the phase of the cardiac cycle is an important modulator of perception and cognition, as previously proposed, then the way in which we actively sample the world should be similarly modulated by the phase of the cardiac cycle. Here we tested this by coregistration of eye movements and heartbeat signals while participants freely compared differences between two visual arrays. Across three different analyses, we found a significant coupling of saccades, subsequent fixations, and blinks with the cardiac cycle. More eye movements were generated during the systolic phase of the cardiac cycle, which has been reported as the period of maximal effect of the baroreceptors' activity upon cognition. Conversely, more fixations were found during the diastole phase (quiescent baroreceptors). Lastly, more blinks were generated in the later period of the cardiac cycle. These results suggest that interoceptive and exteroceptive processing do adjust to each other; in our case, by sampling the outer environment during quiescent periods of the inner organism

    Pre-saccadic perception: separate time courses for enhancement and spatial pooling at the saccade target

    Get PDF
    We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“unmasking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target

    Perceptual Grouping of Object Contours Survives Saccades

    Get PDF
    Human observers explore scenes by shifting their gaze from object to object. Before each eye movement, a peripheral glimpse of the next object to be fixated has however already been caught. Here we investigate whether the perceptual organization extracted from such a preview could guide the perceptual analysis of the same object during the next fixation. We observed that participants were indeed significantly faster at grouping together spatially separate elements into an object contour, when the same contour elements had also been grouped together in the peripheral preview display. Importantly, this facilitation occurred despite a change in the grouping cue defining the object contour (similarity versus collinearity). We conclude that an intermediate-level description of object shape persists in the visual system across gaze shifts, providing it with a robust basis for balancing efficiency and continuity during scene exploration

    Saccadic suppression in schizophrenia

    Get PDF
    About 40% of schizophrenia patients report discrete visual disturbances which could occur if saccadic suppression, the decrease of visual sensitivity around saccade onset, is impaired. Two mechanisms contribute to saccadic suppression: eeference copy processing and backwards masking. Both are reportedly altered in schizophrenia. However, saccadic suppression has not been investigated in schizophrenia. 17 schizophrenia patients and 18 healthy controls performed a saccadic suppression task using a Gabor stimulus with individually adjusted contrast, which was presented within an interval 300 ms around saccade onset. Visual disturbance scores were higher in patients than controls, but saccadic suppression strength and time course were similar in both groups with lower saccadic suppression rates being similarly related to smaller saccade amplitudes. Saccade amplitudes in the saccadic suppression task were reduced in patients, in contrast to unaltered amplitudes during a saccade control task. Notably, smaller saccade amplitudes were related to higher visual disturbances scores in patients. Saccadic suppression performance was unrelated to symptom expression and antipsychotic medication. Unaltered saccadic suppression in patients suggests sufficiently intact eeference copy processing and backward masking as required for this task. Instead, visual disturbances in patients may be related to restricted saccadic amplitudes arising from cognitive load while completing a task

    Fixation related shifts of perceptual localization counter to saccade direction

    Get PDF
    Perisaccadic compression of the perceived location of flashed visual stimuli toward a saccade target occurs from about 50 ms before a saccade. Here we show that between 150 and 80 ms before a saccade, perceived locations are shifted toward the fixation point. To establish the cause of the ‘‘reverse’’ presaccadic perceptual distortion, participants completed several versions of a saccade task. After a cue to saccade, a probe bar stimulus was briefly presented within the saccade trajectory. In Experiment 1 participants made (a) overlap saccades with immediate return saccades, (b) overlap saccades, and (c) step saccades. In Experiment 2 participants made gap saccades in complete darkness. In Experiment 3 participants maintained fixation with the probe stimuli masked at various interstimulus intervals. Participants indicated the bar’s location using a mouse cursor. In all conditions in Experiment 1 presaccadic compression was preceded by compression toward the initial fixation. In Experiment 2, saccadic compression was maintained but the preceding countercompression was not observed. Stimuli masked at fixation were not compressed. This suggests the two opposing compression effects are related to the act of executing an eye movement. They are also not caused by the requirement to make two sequential saccades ending at the initial fixation location and are not caused by continuous presence of the fixation markers. We propose that countercompression is related to fixation activity and is part of the sequence of motor preparations to execute a cued saccade
    corecore