1,316 research outputs found

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation.

    Get PDF
    The aim of this study was to compare the performance of a microwave ablation (MWA) apparatus in preclinical and clinical settings.The same commercial 2.45 GHz MWA apparatus was used throughout this study. In total 108 ablations at powers ranging from 20 to 130 W and lasting from 3 to 30 min were obtained on ex vivo bovine liver; 28 ablations at 60 W, 80 W and 100 W lasting 5 and 10 min were then obtained in an in vivo swine model. Finally, 32 hepatocellular carcinomas (HCCs) and 19 liver metastases in 46 patients were treated percutaneously by administering 60 W for either 5 or 10 min. The treatment outcome was characterised in terms of maximum longitudinal and transversal axis of the induced ablation zone.Ex vivo ablation volumes increased linearly with deposited energy (rFor the selected MW ablation device, ex vivo data on bovine liver was more predictive of the actual clinical performance on liver malignancies than an in vivo porcine model. Equivalent MW treatments yielded a significantly different response for HCC and metastases at higher deposited energy, suggesting that outcomes are not only device-specific but must also be characterised on a tissue-by-tissue basis

    Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions

    Get PDF
    Percutaneous thermal ablation has proved to be an effective modality for treating both benign and malignant tumors in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50 oC, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumor destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of- the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non- invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow

    Heating technology for malignant tumors: a review

    Get PDF
    The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 degrees C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 degrees C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors

    A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode

    Get PDF
    Purpose: To improve the computer modelling of radiofrequency ablation (RFA) by internally cooled wet (ICW) electrodes with added clinically oriented features. Methods: An improved RFA computer model by ICW electrode included: (1) a realistic spatial distribution of the infused saline, and (2) different domains to distinguish between healthy tissue, saline-infused tumour, and non-infused tumour, under the assumption that infused saline is retained within the tumour boundary. A realistic saline spatial distribution was obtained from an in vivo pig liver study. The computer results were analysed in terms of impedance evolution and coagulation zone (CZ) size, and were compared to the results of clinical trials conducted on 17 patients with the same ICW electrode. Results: The new features added to the model provided computer results that matched well with the clinical results. No roll-offs occurred during the 4-min ablation. CZ transversal diameter (4.10 ± 0.19 cm) was similar to the computed diameter (4.16 cm). Including the tumour and saline infusion in the model involved (1) a reduction of the initial impedance by 10 − 20 Ω, (2) a delay in roll-off of 20 s and 70 − 100 s, respectively, and (3) 18 − 31% and 22 − 36% larger CZ size, respectively. The saline spatial distribution geometry was also seen to affect roll-off delay and CZ size. Conclusions: Using a three-compartment model and a realistic saline spatial distribution notably improves the match with the outcome of the clinical trials

    Temperature Distribution Mapping Using an FBG-Equipped Probe for Solid Tumor Laser Ablation

    Get PDF
    In recent years, laser ablation treatments have become promising therapies for early-stage solid tumors, although the anatomical variability within the irradiated organs (i.e., presence of blood vessels and other inhomogeneities) greatly challenges the control of the tissue temperature throughout the medical procedure and thus the optical therapeutic outcome. To help getting around these limitations, a new fiber optic probe able to both deliver the laser light with optimal irradiation pattern and measure the temperature in the tumor region had been previously developed. This paper, using simulations validated with experimental data, aims at demonstrating how this probe, combined with suitable hyperthermal treatment planning, can be used to overcome the discrepancies between ex-vivo and in-vivo laser ablation procedures

    FEM analysis of RF breast ablation: Multiprobe versus cool-tip electrode

    Get PDF
    Background: Radio-frequency ablation (RFA) has recently received much attention as an effective minimally invasive strategy for the local treatment of tumors. The purpose of this study was to evaluate the efficacy of single-needle cool-tip RF breast ablation in terms of temperature distribution and duration of the procedure as compared to multiprobe RF breast ablation. Materials and Methods: Two different commercially available radiofrequency ablation needle electrodes were compared. Finite-element method (FEM) models were developed to simulate the thermoablation procedures. A series of ex vivo radiofrequency thermal lesions were induced to check the response of the FEM calculations. Results: Data obtained from FEM models and from ex vivo procedures showed that cool-tip RF breast ablation assures better performances than multiprobe RF breast ablation in terms of temperature distribution and duration of the procedure. Histopathological analysis of the cool-tip RF thermoablated specimens showed successful induction of coagulation necrosis in the thermoablated specimens. Conclusion: Data obtained from FEM models and from ex vivo procedures suggest that the proposed cool-tip RF breast ablation may kill more tumor cells in vivo with a single application than the multiprobe RF breast ablation

    Antenna and system design for controlled delivery of microwave thermal ablation

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringPunit PrakashMicrowave ablation is an established minimally invasive modality for thermal ablation of unresectable tumors and other diseases. The goal of a microwave ablation procedure is to deliver microwave power in a manner localized to the targeted tissue, with the objective of raising the target tissue to ablative temperatures (~60 °C). Engineering efforts in microwave applicator design have largely been focused on the design of microwave antennas that yield large, near-spherical ablation zones, and can fit within rigid needles or flexible catheters. These efforts have led to significant progress in the development and clinical application of microwave ablation systems, particularly for treating tumors in the liver and other highly vascular organs. However, currently available applicator designs are ill-suited to treating targets of diverse shapes and sizes. Furthermore, there are a lack of non-imaging-based techniques for monitoring the transient progression of the ablation zone as a means for providing feedback to the physician. This dissertation presents the design, implementation, and experimental evaluation of microwave ablation antennas for site-specific therapeutic applications with these issues in mind. A deployable 915 MHz loop antenna is presented, providing a minimally-invasive approach for thermal ablation of the endometrial lining of the uterus for treatment of heavy menstrual bleeding. The antenna incorporates a radiating loop, which can be deployed to adjustable shapes within the uterine cavity, and a passive element, to enable thermal ablation, to 5.7–9.6 mm depth, of uterine cavities ranging in size from 4–6.5 cm in length and 2.5–4.5 cm in width. Electromagnetic–bioheat transfer simulations were employed for design optimization of the antennas, and proof-of-concept applicators were fabricated and extensively evaluated in ex vivo tissue. Finally, feasibility of using the broadband antenna reflection coefficient for monitoring the ablation progress during the course of ablation was evaluated. Experimental studies demonstrated a shift in antenna resonant frequency of 50 MHz correlated with complete ablation. For treatment of 1–2 cm spherical targets, water-cooled monopole antennas operating at 2.45 and 5.8 GHz were designed and experimentally evaluated in ex vivo tissue. The technical feasibility of using these applicators for treating 1–2 cm diameter benign adrenal adenomas was demonstrated. These studies demonstrated the potential of using minimally-invasive microwave ablation applicators for treatment of hypertension caused by benign aldosterone producing adenomas. Since tissue dielectric properties have been observed to change substantially at elevated temperatures, knowledge of the temperature-dependence of tissue dielectric properties may provide a means for estimating treatment state from changes in antenna reflection coefficient during a procedure. The broadband dielectric properties of bovine liver, an established tissue for experimental characterization of microwave ablation applicators, were measured from room temperature to ablative temperatures. The measured dielectric data were fit to a parametric model using piecewise linear functions, providing a means for readily incorporating these data into computational models. These data represent the first report of changes in broadband dielectric properties of liver tissue at ablative temperatures and should help enable additional studies in ablation system development
    • …
    corecore