3,292 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    A Novel 4-DOF Parallel Manipulator H4

    Get PDF

    Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism

    Get PDF
    This paper investigates a new reconfigurable parallel mechanism consisting of three SvPS kinematic limbs. Induced by phase changes of a metamorphic spherical variable-axis joint (Sv), the SvPS limb is capable of changing to two typical configurations, of which one exerts no constraint and the other exerts a constraint force to the moving platform. Reconfiguration of the three limbs enables the 3-SvPS parallel mechanism to have four distinct configurations with degrees of freedom (DOF) varying from 3 to 6. Analytical model of position and workspace analysis of the reconfigurable parallel mechanism are first investigated. In terms of the screw theory, a unified Jacobian matrix covering all the mobility configurations is established and utilized for analyzing singularity of the parallel mechanism in different configurations. Further, performance analysis and optimization are explored using the motion/force transmission method. The 3-SvPS parallel mechanism can be used as structure of reconfigurable robotic machine center with adaptability to changing task requirements

    Kinematic and dynamic analysis of spatial six degree of freedom parallel structure manipulator

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2003Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishviii, 86 leavesThis thesis covers a study on kinematic and dynamic analysis of a new type of spatial six degree of freedom parallel manipulator. The background for structural synthesis of parallel manipulators is also given. The structure of the said manipulator is especially designed to cover a larger workspace then well-known Stewart Platform and its derivates. The main point of interest for this manipulator is its hybrid actuating system, consisting of three revolute and three linear actuators.Kinematic analysis comprises forward and inverse displacement analysis. Screw Theory and geometric constraint considerations were the main tools used. While it was possible to derive a closed-form solution for the inverse displacement analysis, a numerical approach was used to solve the problem of forward displacement analysis. Based on the results of the kinematic analysis, a rough workspace study of the manipulator is also accomplished. On the dynamics part, attention has been given on inverse dynamics problem using Lagrange-Euler approach.Both high and lower level software were heavily utilized. Also computer software called .CASSoM. and .iMIDAS. are developed to be used for structural synthesis and inverse displacement analysis. The major contribution of the study to the scientific community is the proposal of a new type of parallel manipulator, which has to be studied extensively regarding its other interesting properties

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Design, Dimensional Synthesis and Evaluation of a Novel 2-DOF Spherical RCM Mechanism for Minimally Invasive Surgery

    Get PDF
    With the development of minimally invasive surgery (MIS) technology, higher requirements are put forward for the performance of remote center of motion (RCM) manipulator. This paper presents the conceptual design of a novel two degrees of freedom (2-DOF) spherical RCM mechanism, whose axes of all revote joints share the same RCM. Compared with the existing design, the proposed mechanism indicates a compact design and high structure stability, and the same scissor-like linkage makes it easy to realize modular design. It also has the advantages of singularity free and motion decoupling in its workspace, which simplifies the implementation and control of the manipulator. In addition, compared with the traditional spherical scissor linkage mechanism, the proposed mechanism adds a rotation constraint on the output shaft to provide better operating performance. In this paper, the kinematics and singularities of different cases are deduced and compared, and the kinematic model of the best case is established. According to the workspace and constraints in MIS, the optimal structural parameters of the mechanism are determined by dimensional synthesis with the goal of optimal global operation performance. Furthermore, a prototype is assembled to verify the performance of the proposed mechanism. The experimental results show that the 2-DOF prototype can provide a reliable RCM point. The compact design makes the manipulator have potential application prospects in MIS

    An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines

    Get PDF
    International audienceThis paper addresses an interval analysis based study that is applied to the design and the comparison of 3-DOF parallel kinematic machines. Two design criteria are used, (i) a regular workspace shape and, (ii) a kinetostatic performance index that needs to be as homogeneous as possible throughout the workspace. The interval analysis based method takes these two criteria into account: on the basis of prescribed kinetostatic performances, the workspace is analysed to find out the largest regular dextrous workspace enclosed in the Cartesian workspace. An algorithm describing this method is introduced. Two 3-DOF translational parallel mechanisms designed for machining applications are compared using this method. The first machine features three fixed linear joints which are mounted orthogonally and the second one features three linear joints which are mounted in parallel. In both cases, the mobile platform moves in the Cartesian x-y-z space with fixed orientation
    corecore