152,626 research outputs found

    Parallelizing Quantum Circuits

    Get PDF
    We present a novel automated technique for parallelizing quantum circuits via forward and backward translation to measurement-based quantum computing patterns and analyze the trade off in terms of depth and space complexity. As a result we distinguish a class of polynomial depth circuits that can be parallelized to logarithmic depth while adding only polynomial many auxiliary qubits. In particular, we provide for the first time a full characterization of patterns with flow of arbitrary depth, based on the notion of influencing paths and a simple rewriting system on the angles of the measurement. Our method leads to insightful knowledge for constructing parallel circuits and as applications, we demonstrate several constant and logarithmic depth circuits. Furthermore, we prove a logarithmic separation in terms of quantum depth between the quantum circuit model and the measurement-based model.Comment: 34 pages, 14 figures; depth complexity, measurement-based quantum computing and parallel computin

    Quantum simulation of partially distinguishable boson sampling

    Get PDF
    Boson Sampling is the problem of sampling from the same output probability distribution as a collection of indistinguishable single photons input into a linear interferometer. It has been shown that, subject to certain computational complexity conjectures, in general the problem is difficult to solve classically, motivating optical experiments aimed at demonstrating quantum computational "supremacy". There are a number of challenges faced by such experiments, including the generation of indistinguishable single photons. We provide a quantum circuit that simulates bosonic sampling with arbitrarily distinguishable particles. This makes clear how distinguishabililty leads to decoherence in the standard quantum circuit model, allowing insight to be gained. At the heart of the circuit is the quantum Schur transform, which follows from a representation theoretic approach to the physics of distinguishable particles in first quantisation. The techniques are quite general and have application beyond boson sampling.Comment: 25 pages, 4 figures, 2 algorithms, comments welcom

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Fault testing quantum switching circuits

    Get PDF
    Test pattern generation is an electronic design automation tool that attempts to find an input (or test) sequence that, when applied to a digital circuit, enables one to distinguish between the correct circuit behavior and the faulty behavior caused by particular faults. The effectiveness of this classical method is measured by the fault coverage achieved for the fault model and the number of generated vectors, which should be directly proportional to test application time. This work address the quantum process validation problem by considering the quantum mechanical adaptation of test pattern generation methods used to test classical circuits. We found that quantum mechanics allows one to execute multiple test vectors concurrently, making each gate realized in the process act on a complete set of characteristic states in space/time complexity that breaks classical testability lower bounds.Comment: (almost) Forgotten rewrite from 200

    NMR Quantum Computation

    Get PDF
    In this article I will describe how NMR techniques may be used to build simple quantum information processing devices, such as small quantum computers, and show how these techniques are related to more conventional NMR experiments.Comment: Pedagogical mini review of NMR QC aimed at NMR folk. Commissioned by Progress in NMR Spectroscopy (in press). 30 pages RevTex including 15 figures (4 low quality postscript images

    A unified design space of synthetic stripe-forming networks

    Get PDF
    Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space
    corecore