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Boson Sampling is the problem of sampling from the same output probability distribution as a
collection of indistinguishable single photons input into a linear interferometer. It has been shown
that, subject to certain computational complexity conjectures, in general the problem is difficult to
solve classically, motivating optical experiments aimed at demonstrating quantum computational
“supremacy”. There are a number of challenges faced by such experiments, including the generation
of indistinguishable single photons. We provide a quantum circuit that simulates bosonic sampling
with arbitrarily distinguishable particles. This makes clear how distinguishabililty leads to deco-
herence in the standard quantum circuit model, allowing insight to be gained. At the heart of the
circuit is the quantum Schur transform, which follows from a representation theoretic approach to
the physics of distinguishable particles in first quantisation. The techniques are quite general and
have application beyond boson sampling.

I. INTRODUCTION

Ever since the idea of quantum computers was first
proposed, there has been significant interest in demon-
strating how much more powerful they are than their
classical counterparts. This has been shown for a number
of problems, from factoring integers [1] to solving linear
equations [2]. However, these algorithms require large
fault-tolerant quantum computers, which have proven
challenging to develop. This has led to the search for
a so called quantum advantage: a quantum experiment
can be demonstrated in a laboratory in the near future,
yet is hard to simulate on a classical computer [3]. Nu-
merous proposals have been made [4, 5], with perhaps
the best known being Boson Sampling [6], which consid-
ers the complexity of sampling from the same probability
distribution as n indistinguishable photons output from
an m-mode linear optical interferometer, shown to be de-
termined by matrix permanents [7].

In their breakthrough article, Aaronson and Arkhipov
showed that the ability to exactly simulate Boson Sam-
pling in polynomial time would imply that P#P =
BPPNP and the Polynomial Hierarchy would collapse to
the third level. The same result was also shown for ap-
proximately sampling from the same distribution, mod-
ulo two conjectures related to the permanents of Gaus-
sian matrices [6]. This has led to the development of nu-
merous experiments [8–11], with demonstrations as large
as five and six photons [12, 13].

However, going from these small demonstrations to be-
ing able to significantly outperform classical simulation
is not a simple task, as recently highlighted by two pa-
pers. The first, by Neville et al. [14], gives an empirical
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evaluation of approximately sampling from the boson dis-
tribution when there are no collisions via a Markov Chain
Monte Carlo algorithm, showing that they could produce
250 samples for 30 bosons across 900 modes in under
five hours. The second, by Clifford and Clifford [15],
gives the first algorithm for exact Boson Sampling that
is more efficient than computing the entire probability
distribution, sampling from n photons across m modes
in O(n2n + poly(n,m)) time and O(m) space.

Any claim of a quantum advantage will furthermore
need to take into account the practical challenges asso-
ciated with Boson Sampling. One such challenge, which
will be the focus of this work, is the need for indistin-
guishable single bosons. It is also clear that the particles
being indistinguishable is to some extent a requirement
for the problem to remain computationally hard, as there
are known algorithms when the bosons are perfectly dis-
tinguishable [16]. Generating large numbers of indistin-
guishable photons is infeasible with current techniques,
with the probability going like pn where p is the proba-
bility of generating a single photon [17].

In recent years there has been a wealth of theory on lin-
ear optical interferometry with partially distinguishable
photons [18–25], which has lead to some known results
on the computational complexity of sampling. Renema
et al. [26] give a classical algorithm for approximate sam-
pling, which they use as a lower bound for how indistin-
guishable the photons must be in order to achieve a sig-
nificant quantum advantage. Shchesnovich used average
mutual fidelity to give an upper bound on the problem’s
complexity, stating that a sampling experiment is more
powerful when the single-photon mode mismatch scales
as O(n−3/2) for n photons [27]. Rohde and Ralph [28]
also briefly discuss this problem, using narrowband fil-
tering to relate distinguishability to loss in order to give
an upper bound.

In this paper we explore the problem of sampling from
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a collection of n partially distinguishable single bosons
interacting on a m-mode interferometer from the oppo-
site direction, that is, from the perspective of quantum
simulation. We do so by observing that ideal Boson Sam-
pling is equivalent to sampling from the totally symmet-
ric representation of the unitary group, and that par-
tial distinguishability generalises this to the problem of
sampling from arbitrary irreducible representations. We
show that quantum circuits for the Schur transform [29]
can therefore be used to give a polynomial time quantum
algorithm for sampling from the same probability distri-
bution as bosons emerging from a linear interferometer,
regardless of distinguishability.

Although it is generally accepted that quantum com-
puters can perform Boson Sampling efficiently, there are
few places where such algorithms are actually described
explicitly. An example of such a method for the ideal
(indistinguishable) case is by Aaronson and Arkhipov [6],
using a technique by Reck et al. [30] to decompose the
unitary matrix U into a sequence of O(d2) optical ele-
ments, each implemented via the Solovay-Kitaev theo-
rem [31]. Here we show explicitly how nonideal linear
optics can be viewed as a quantum computation, allow-
ing a wider range of realistic experimental situations to
be considered. Our approach shows that while the ideal
case is intimately related to the symmetric representa-
tion of the unitary group through matrix permanents, in
the nonideal case all representations play a role.

The paper is structured as follows. In Section II we
give an overview of background material including Bo-
son Sampling, irreducible representations of the unitary
and symmetric groups, and Schur-Weyl duality. We pro-
vide a simple quantum circuit for ideal indistinguishable
photon sampling in Section III, before introducing the
full circuit for sampling with distinguishable photons in
Section IV. In Section V, we provide some further expla-
nation as to why these circuits work, via what is known as
unitary-unitary duality. Following this result, we discuss
a few interesting consequences: in Section V A, we show
how postselection can be used with this circuit to sam-
ple from the indistinguishable distribution when given a
distinguishable input; in Section VI, we consider how the
circuit can be used to simulate Boson Sampling when
photons are lost; and in Section VII, we consider the
multipartite entanglement of the output in the distin-
guishable case.

II. PRELIMINARIES

A. Sampling from bosonic distributions

We start by defining the ideal probability distribution
of indistinguishable single bosons interacting on a linear
interferometer. We’ll refer to this as bosonic sampling, as
it’s a bit more general than Aaronson and Arkhipov’s Bo-
son Sampling problem as we describe below. The input is
U ∈ U(m), an m×m unitary matrix which describes an

m-mode linear interferometer, and S = (S1, S2, . . . , Sm)
with

∑m
i=1 Si = n, an ordered list of integers that corre-

sponds to an n-boson, m-mode occupation describing the
input state with Si bosons in mode i. Given an output
occupation S′, define the n× n (not necessarily unitary)
matrix US′,S as that formed by first taking S′i copies of
row i of U in order to create an m × n matrix, from
which we then take Sj copies of column j. We can then
define DU,S , the probability distribution for measuring
an n-boson m-mode occupation S′ for interferometer U
and input state S, as

PrDU,S [S′] =
|per(US′,S)|2∏m

i=1 S
′
i!Si!

, (1)

where per is the matrix permanent.
In a photonics experiment, this setting is described in

terms of creation operators a†i for a photon in mode i.
The initial state is then

|S〉 =

m∏
i=0

(a†i )
Si

√
Si
|0n〉. (2)

The evolution of the photonic state induced by a linear
optical interferometer implementing U can then be ex-

pressed as a†i 7→
∑m
j=0 Ui,ja

†
j . Thus single boson states

evolve under linear interferometry just as a m dimen-
sional qudit does under a unitary gate U (sometimes
called unary encoding). This suggests how quantum cir-
cuits simulating photonics might be constructed, as we’ll
see.

The problem known as Boson Sampling is that of
sampling from this probability distribution in the case

where the input occupation is specified as |1n0n
2−n〉 =∏n

i=1 a
†
i |0〉, and U is drawn Haar randomly from U(m =

n2)[6]. It was proven by Aaronson and Arkhipov that
if there was a polynomial time classical algorithm for
sampling from this distribution, then P#P = BPPNP

and the Polynomial Hierarchy would collapse to the third
level. They also showed similar results for approximate
Boson Sampling, where samples are drawn from a dis-
tribution DO(U,ε) such that ||DO(U,ε) − DU || ≤ ε for all
U ∈ U(m).

B. Schur-Weyl duality

Our algorithm can be understood from the perspec-
tive of the representation theory of the unitary group
U(m) of linear interferometers acting of m modes. The
irreducible representations, or irreps, are intimately re-
lated to those of the symmetric group Sn that permutes
the particles. Irreps of both of these groups are indexed
by ordered partitions λ = (λ1, λ2, · · · , λm) of n such that
λi ≥ λi+1 and

∑m
i=1 λi = n. We usually suppress zeros in

this notation, so for example the totally symmetric irrep
λ = (n, 0, · · · , 0) is written (n). The number of nonzero
λi is called the length of the partition, `(λ), and only
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partitions with `(λ) ≤ m occur, which we will assume in
all of our expressions that follow.

For the tensor space of n m-dimensional qudits, the
actions of the symmetric and unitary groups on a state
|Ψ〉 ∈ (Cm)⊗n are explicitly as follows. For a permuta-
tion σ ∈ Sn, the action permutes the tensor factors. For a
unitary matrix U ∈ U(m), the action is the N -fold tensor
product U⊗n. It is not hard to see that these two actions
commute. We can now describe Schur-Weyl duality as
the following theorem.

Theorem 1 (Schur-Weyl duality [32]). The Hilbert space
of n m-dimensional qudits decomposes into irreducible
subspaces

(Cm)⊗n '
⊕
λ`n

C{λ} ⊗ C(λ), (3)

where C{λ} carries irrep {λ} of U(m) and C(λ) carries
irrep (λ) of Sn, and ' indicates a change of basis is in-
volved. The dimension of irrep (λ) can be viewed as the
multiplicity of irrep {λ}, and vice versa.

There is an efficient quantum circuit that implements
the Schur-Weyl decomposition. Given a state |Ψ〉 ∈
(Cm)⊗n in the computational basis, this circuit, which
we label W , performs the transformation

W |Ψ〉 =
∑
λ`n

∑
qλ

∑
pλ

Cλqλ,pλ |λ〉|qλ〉|pλ〉, (4)

where λ indexes the irrep, qλ and pλ index bases of ir-
reps {λ} and (λ) respectively, and Cλqλ,pλ is a generalised
Clebsch-Gordan coefficient. For example, the unitary ac-
tion of U(m) in this basis is

U : |λ〉|qλ〉|p〉 → |λ〉|U ·qλ〉|p〉 := |λ〉

∑
q′λ

Uλqλ,q′λ
|q′λ〉

 |p〉,
(5)

where Uλ is the irreducible unitary matrix corresponding
to U ∈ U(m). It was proven by Bacon, Chuang and Har-
row that this circuit runs in polynomial time in terms of
n, m and log(δ−1), where δ is an accuracy parameter [29].

III. A QUANTUM CIRCUIT FOR IDEAL
BOSONIC SAMPLING

Here we describe a quantum circuit for bosonic sam-
pling when the bosons are perfectly indistinguishable
(and free from other errors such as loss, which we’ll dis-
cuss later on). This circuit samples with accuracy δ + ε
and runs in polynomial time and space in terms of m,
n, log(δ−1) & log(ε−1). Here and throughout the pa-
per, δ describes the precision with which we are able to
approximate the Schur transform via the Bacon-Chuang-
Harrow circuit, and ε the accuracy to which we can ap-
proximate the unitary matrix U via the Solovay-Kitaev
theorem [31, 33]. Note that although the Solovay-Kitaev

|(n)〉

|q(n)〉

|p(n) = 1〉

W †

|ψ1〉 U

U

U

...

|ψ2〉

|ψn〉

...

W

|(n)〉

|U · q′(n)〉

|p(n) = 1〉

{λ}S S ′

FIG. 1. A quantum circuit for Algorithm 1. Note that
the measurement of the q-register returns a string that we
associate to a GZ basis state.

construction can involve exponential resources in terms of
m, this can be avoided by first performing a Hurwitz (or
Reck) decomposition into smaller unitaries [30, 34, 35].

The goal of the circuit is to sample from the totally
symmetric subspace of (Cm)⊗n, where the interferom-
eter U ∈ U(m) acts as the totally symmetric irrep of
the unitary group given by {λ = (n)}. In order to con-
struct symmetrised states given the input occupation S,
we use the (inverse) Schur transform. The Schur circuit
W specifies irreps of U(m) in the Gelfand-Zeitlin (GZ)
basis, so we need a way to map between these states
and occupations. We can do this via the pattern weight
ν = (ν1, · · · , νd), which can be related to a GZ pattern
for any irrep [36]. For the fully symmetric irrep, the pat-
tern weight is unique for each GZ state and there is a
particularly simple mapping from occupations to sym-
metric GZ states in this case, namely νi = Si [37]; this
has also been referred to as a quantum analog of a classi-
cal “type” [38]. Thus, we have an efficient way to identify
an input occupation S with a GZ basis state q(n).

We can now see how a circuit for indistinguishable bo-
son sampling would work. Given an input occupation
S, we prepare the corresponding state |q(n)〉 of the q-
register. To use the inverse Schur transform, we append
to this input state a quantum register for the irrep |(n)〉,
and another for the symmetric group index |p(n)〉. Note
that there is only one possible state for the p(n) regis-
ter, because the fully symmetric irrep of the symmetric
group is one dimensional; thus p(n) = 1 always. The

inverse Schur transformation W † takes this state to a
symmetric state of n qudits in (Cm)⊗n. In this tensor
space, we now need only apply the interferometer ma-
trix U to each qudit in parallel as the circuit U⊗n. This
can be done with accuracy ε in O(logc(1/ε)) time via
the Solovay-Kitaev theorem [31, 33]. Finally, we apply
the Schur transform again and measure the q-register to
get a sample q′(n), from which we can easily compute the

pattern weight/type to get an output occupation S′.

A complete version of the quantum circuit for Boson
Sampling is given in Algorithm 1, as well as a circuit
description in Figure 1.

We can demonstrate correctness by showing that this
distribution does indeed match the one we have for sam-
pling from indistinguishable bosons. We start with the
input occupation S. After mapping this to a unitary ir-
rep state |q(n)〉 and applying W †, we end up with the
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input : A matrix U ∈ U(m) and
an n-boson m-mode occupation S.

output: An n-boson m-mode occupation S′.

1Map S to q-register basis index q(n);
2Prepare input state |λ = (n)〉|q(n)〉|p(n) = 1〉;
3Apply W †, producing a state |Ψ〉 ∈ (Cm)⊗n;
4Synthesize U via Solovay-Kitaev;
5Execute U on each qudit in parallel, implementing

U⊗n;
6Apply W , producing state |(n)〉|U · q(n)〉|1〉;
7Measure the q-register to obtain a sample q′(n);

8Map q′(n) to an occupation S′;

9return S′

Algorithm 1: A quantum circuit for sampling
from the same distribution as that produced by

indistinguishable bosons in a linear interferometer.

symmetrized state

W †|q(n)〉 =
1√

n!
∏m
i=1 Si!

∑
σ∈Sn

σ|s〉, (6)

where |s〉 can be chosen to be any computational basis
state with occupation S, that is, with Si of the qudits in
state i. Arguing similarly for the output S′, we see that
the probability of the algorithm outputting q′(n) given

inputs U and S is

Pr[q′(n)] = |〈q′(n)|WU⊗nW †|q(n)〉|2 (7)

=

∣∣∣∣∣∣ 1

n!
√∏m

i=1 S
′
i!Si!

∑
σ,σ′∈Sn

〈s′|σ′†U⊗nσ|s〉

∣∣∣∣∣∣
2

(8)

=
1∏m

i=1 S
′
i!Si!

∣∣∣∣∣∣ 1

n!

∑
σ,σ′∈Sn

n⊗
k=1

〈s′σ′−1(k)|U |sσ−1(k)〉

∣∣∣∣∣∣
2

(9)

=
1∏m

i=1 S
′
i!Si!

∣∣∣∣∣∣ 1

n!

∑
σ,σ′∈Sn

n∏
k=1

Us′k,sσ−1(σ′(k))

∣∣∣∣∣∣
2

(10)

=
1∏m

i=1 S
′
i!Si!

∣∣∣∣∣∑
τ∈Sn

n∏
k=1

Us′k,sτ(k)

∣∣∣∣∣
2

(11)

=
|per(US′,S)|2∏m

i=1 S
′
i!Si!

. (12)

Thus the output probability distribution matches the one
given in Eq. (1). We also see that Schur-Weyl duality
implies

U
(n)
q(n),q

′
(n)

=
per(US′,S)√∏m

i=1 S
′
i!Si!

. (13)

That is, the totally symmetric representation of the uni-
tary group can be constructed from permanents of US′,S
matrices [39].

As for the complexity of this circuit, the mapping from
bosons to q(n) states and back can be done in polyno-
mial time and space in terms of n [37], Schur-Weyl dual-
ity takes polynomial time and space in terms of d, n &
log(δ−1) and the Solovay-Kitaev theorem allows U to be
implemented in polynomial time and space. From this
and the earlier points discussed in this section, we find
that Theorem 2 holds.

Theorem 2. Algorithm 1 performs ideal bosonic sam-
pling with approximation δ + ε in polynomial time and
space in terms of m, n, log(δ−1) and log(ε−1).

We observe that this circuit could be simplified in sev-
eral ways. Firstly, the entire Schur transform is not re-
quired because in the ideal case the problem is confined
to the symmetric irrep only. As we will see, this is not
the case in the non-ideal (distinguishable) case.

Another simplification that we’ll use in the next section
is the following observation. If rather than applying step
5 onwards in Algorithm 1 we simply measure the registers
in the computational basis and return the result rewrit-
ten as an occupation, we also end up with a distribution
given by the permanents. The probability of measuring
a particular computational basis state |s′〉 ∈ (Cm)⊗n is

Pr[s′] =
1

n!
∏m
i=1(Si!)

∣∣∣∣∣〈s′|U⊗n ∑
σ∈Sn

σ|s〉

∣∣∣∣∣
2

(14)

=
1

n!
∏m
i=1(Si!)

∣∣∣∣∣ ∑
σ∈SN

n⊗
k=1

〈s′k|U |sσ−1(k)〉

∣∣∣∣∣
2

(15)

=

∣∣∣∑σ∈Sn

∏n
k=1 Us′k,sσ−1(k)

∣∣∣2
n!
∏m
i=1(Si!)

(16)

=
|per(US′,S)|2

n!
∏m
j=1(Si!)

. (17)

The probability of measuring an occupation S′ is equal to
summing over the probabilities of all states |s′〉 of type
S′, of which there are n!/

∏m
i=1(S′i!). We will consider

both versions of this circuit in subsequent sections on
sampling from distinguishable bosonic distributions.

IV. A QUANTUM CIRCUIT FOR
ARBITRARILY DISTINGUISHABLE BOSONIC

SAMPLING

We now turn to the question of sampling from a dis-
tribution of partially distinguishable bosons, (again with
no loss). Distinguishability is modelled as correlation be-
tween the modes of the bosons’ ‘System’ degrees of free-
dom, and new modes corresponding to ‘Label’ degrees of
freedom. In order to accommodate the possibility of all
n bosons being completely distinguishable, the number
of Label modes must be n so that each boson can be cor-
related to a unique Label. Thus there are now a total of



5

mn modes in the problem. Physically we can think of the
System degree of freedom as the spatial modes available
to the bosons, and the Label as, say, temporal modes –
however the model is completely general.

On the aggregate Hilbert space we have the same setup
as the ideal case, but now by tracing out the Label regis-
ter we see that distinguishability can lead to decoherence
of the System qudits. We assume that an interferometer
implementing a m ×m unitary matrix acts only on the
m System modes, while the Label remains unchanged.
In this model, as well as receiving a unitary matrix U
as input, we also receive an m × n occupation T which
describes how many bosons are in System mode i and La-
bel mode j. This can be described in terms of creation
operators as

|T 〉 =

m∏
i=1

n∏
j=1

(a†i,j)
Ti,j√

Ti,j !
|0〉. (18)

Since the Labels are assumed to be unaffected by the

interferometer, the creation operators evolve as a†i,j →∑m
k=1 Ui,ka

†
k,j .

Our technique for handling distinguishable bosons is
similar to the ideal case where we consider the symmet-
ric irrep {(n)} of the Unitary group. However, the in-
troduction of the Label degree of freedom means that we
no longer map onto the {(n)} irrep of U(m). Instead we
must map onto the {(n)} irrep of the aggregate unitary
group U(mn), since it is now the total state of m System
modes and n Label modes that must be symmetrised.

When we apply W † to the input, we find the same
Young symmetrizer as before, but now output a state
|Ψ〉 ∈ (Cm⊗Cn)⊗n. We can think of this as the ideal case
but now with each qudit being mn dimensional. Further-
more each System-Label qudit can be viewed as bipartite,
with a m-dimensional qudit describing the System degree
of freedom and another n-dimensional qudit describing
the Label. We can therefore split the n System-Label
qudits into two registers, with the interferometer action
and boson detection taking place on only the System reg-
ister, while the Label register ‘eavesdrops’.

A complete description of the circuit is given in Algo-
rithm 2, with a circuit diagram given in Figure 2.

To see that this distribution matches that of partially
distinguishable bosons, we will compare with the results
of Tichy [20]. There, each boson is assigned an “internal”
state |Φi〉, where i = 1, · · · ,m. Thus, in our terminology,
every boson in System mode i has a Label state given by
Φi. The probability distribution given there for sampling
from partially distinguishable bosons is (in our notation)

Pr[S′] =
1∏m

i=1 Si!S
′
i!

∑
τ,τ ′∈Sn

n∏
k=1

Us′k,sτ(k)U
∗
s′k,sτ′(k)

Sτ ′(k),τ(k),

(19)
where Sk,l = 〈Φsk |Φsl〉 is a Hermitian positive-definite
n× n distinguishability matrix, sk gives the mode occu-
pied by particle k, and we’ve included a factor to account

input : A matrix U ∈ U(m) and
an n-boson mn-mode occupation T .

output: An n-boson m-mode occupation S′.

1Map T to q-register basis index q(n) (for U(mn));
2Prepare input state |λ = (n)〉|q(n)〉|p(n) = 1〉;
3Apply W †, producing a state |Ψ〉 ∈ (Cm×n)⊗n;
4Rearrange into two (possibly entangled) quantum

registers |ΨSys〉 = |ψSys,1〉 . . . |ψSys,n〉 ∈ (Cm)⊗n and
|ΨLab〉 = |ψLab,1〉 . . . |ψLab,n〉 ∈ (Cn)⊗n;

5Synthesize U via Solovay-Kitaev;
6Execute U on the |ΨSys〉 qudits in parallel,

implementing U⊗n ⊗ 1lLab;
7Measure the System in the computational basis to
obtain a sample s′;

8Map s′ to an occupation S′ (S′i = # of qudits in state
1 ≤ i ≤ m);

9return S′

Algorithm 2: A quantum circuit for sampling from
(essentially) the same distribution at that produced
by distinguishable bosons in a linear interferometer.

In order to sample from exactly the same
distribution, instead of step 7 one could transform

back to the Schur basis by applying W on the
System and sample the q-register, or one could

perform some post-processing as discussed at the
end of the previous section.

|(n)〉

|q(n)〉

|p(n) = 1〉

W †

|ψ1,Sys〉 U

U

U

...

|ψ2,Sys〉

|ψn,Sys〉

Z

Z

Z

|ψ
1,Lab〉

...

|ψ
2,Lab〉

|ψ
n,Lab〉

...
...

...

T
S ′

FIG. 2. The quantum circuit described in Algorithm 2. For
simplicity we forego the second Schur transform as discussed
in the previous section and measure in the computational (Z)
basis. Note that we only sample from the System qudits,
effectively tracing out the Label qudits.

for the possibility of multiple bosons in the same output
mode. In order to connect our model with this model
of distinguishability, one simply needs to take superposi-
tions of mn-mode input occupations T in such a way as to
realise the Label states Φi. This is always possible since
the space of internal states, span{Φi}mi=1, can always be
embedded in the Label space (Cn)⊗n. For example, con-
sider two bosons in two System modes where one boson is
in System mode 1 and has internal state |1〉 (correspond-
ing to Label mode 1), and the other boson is in System
mode 2 and has internal state |Φ2〉 = α|1〉 + β|2〉. This
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is represented as the following superposition of System-
Label occupations (recall rows of T correspond to the
System and columns to the Label):

α

∣∣∣∣1 0
1 0

〉
+ β

∣∣∣∣1 0
0 1

〉
. (20)

Given a distinguishability matrix Sk,l, in this way we can
prepare a corresponding superposition of occupations T
at step 2 of the algorithm. (We can in fact consider more
general partially distinguishable situations of bosons with
different Label states in the same System mode.)

After step 3 of the algorithm, the state can be written
as

|Ψ〉Sys,Lab =
1√

n!
∏m
i=1 Si!

∑
σ∈Sn

σ|s〉σ
n⊗
k=1

|Φsk〉 (21)

=
1√

n!
∏m
i=1 Si!

∑
σ∈Sn

σ|s〉
n⊗
k=1

|Φsσ−1(k)
〉 (22)

(23)

where |s〉 =
⊗n

k=1 |sk〉 and
⊗n

k=1 |Φsk〉 are quantum reg-
isters describing the System and Label. Tracing out the
Label register yields the reduced density matrix

ρSys = TrLab[|Ψ〉Sys,Lab〈Ψ|] (24)

=
1

n!
∏m
i=1 Si!

∑
σ,σ′∈Sn

σ|s〉〈s|σ′†
n∏
k=1

〈Φsσ′−1(k)
|Φsσ−1(k)

〉

(25)

=
1

n!
∏m
i=1 Si!

∑
σ,σ′∈Sn

σ|s〉〈s|σ′†
n∏
k=1

Sσ′−1(k),σ−1(k).

(26)

When we apply the action of the interferometer U on the
m-dimensional System qudits, the probability of measur-
ing a state |s′〉 after step 7 is

Pr[|s′〉] = Tr[|s′〉〈s′|U⊗nρSys(U
†)⊗n] (27)

=

∑
σ,σ′∈Sn

〈s′|U⊗nσ|s〉〈s|σ′†(U†)⊗n|s′〉
∏n
k=1 Sσ′−1(k),σ−1(k)

n!
∏m
i=1 Si!

(28)

=

∑
σ,σ′∈Sn

∏n
k=1〈s′k|U |sσ−1(k)〉〈sσ′−1(k)|U†|s′k〉Sσ′−1(k),σ−1(k)

n!
∏m
i=1 Si!

(29)

=

∑
τ,τ ′∈Sn

∏n
k=1 Us′k,sτ(k)U

∗
s′k,sτ′(k)

Sτ ′(k),τ(k)

n!
∏m
i=1 Si!

. (30)

Up to a factor, this is the desired probability distribution
of Eq.(19). As discussed at the end of the last section,
this factor could be handled either by applying a sec-
ond Schur transform on the System and sampling the
q-register, or by classical post processing.

Counting resources goes much the same as it did in the
ideal case, though now we have mn-dimensional qudits
that are made up of pairs of m- and n-dimensional qudits.
Separating these System and Label registers in step 3 can
be done with polynomial resources, as can the unitary
transformation on the input q-register that prepares the
input state of arbitrary distinguishability. From this and
the points above, we find that Theorem 3 holds.

Theorem 3. Algorithm 2 samples from the distinguish-
able bosonic distribution with approximation δ + ε when
the distinguishability of the input bosons is known. The
circuit runs in polynomial time and space in terms of
m,n, log(δ−1) and log(ε−1).

A. Complete (in)distinguishability

The two extreme cases of completely indistinguisha-
bility and complete distinguishability are of interest. For

completely indistinguishable bosons, the Label for each
is the same (call it |1〉), and after the (inverse) Schur
transform step we have

1√
n!
∏m
i=1 Si!

∑
σ∈Sn

σ|s〉|1〉⊗n, (31)

It is clear that the Label register is separable from the
System register, and tracing out the Label yields the
same situation as the ideal case in Eq.(6), as it should.

In the completely distinguishable case, each boson has
a different unique Label, correlated to a unique System
mode (note m ≥ n in this case). This implies that the oc-
cupation T has a single 1 in each of n rows and columns,
and zeros elsewhere. The (inverse) Schur transformed
state has System and Label registers s and l that are
completely correlated sequences of length n with no rep-
etitions; if we choose to order the bases 123 · · ·n then we
have the state
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1√
n!

∑
σ∈Sn

σ|s〉σ|l〉 =
1√
n!

∑
σ∈Sn

|σ−1(1)σ−1(2) · · ·σ−1(n)〉|σ−1(1)σ−1(2) · · ·σ−1(n)〉. (32)

We see that this is maximally entangled on the “coin-
cident” subspace of states with a single boson in each
mode. Tracing out the Label yields the reduced System
state

ρSys =
1

n!

∑
σ,σ′∈Sn

σ|s〉〈s|σ′† 〈l|σ′†σ|l〉 (33)

=
1

n!

∑
σ∈Sn

σ|s〉〈s|σ†, (34)

which follows because the Label overlap is only nonzero
if σ′†σ = 1l ⇒ σ′ = σ due to the fact that l has no
repetitions. After the action of U , the probability of
measuring |s′〉 ∈ (Cm)⊗n is

Pr[|s′〉] = Tr[|s′〉〈s′|U⊗nρU†⊗n] (35)

=
1

n!
〈s′|U⊗n

(∑
σ∈Sn

σ|s〉〈s|σ†
)
U†⊗n|s′〉 (36)

=
1

n!

∑
σ∈Sn

n∏
k=1

|Us′k,sσ−1(k)
|2 (37)

=
per(|US′,S |2)

n!
, (38)

where we’ve defined |US′,S |2 as the elementwise square
of the absolute value. We can find the probability of
returning occupation S′ by summing up the probabilities
of all n!/

∏m
i=1(S′i!) states of type s′, giving

Pr[S′] =
per(|US′,S |2)∏m

i=1 S
′
i!

, (39)

which agrees with the (classical) probability distribution
for sampling with distinguishable bosons [16].

Note that we could have considered a distinguishable
input where each boson has a unique Label, but with
multiple occupancy of System modes. In that case the
analysis would show the output distribution to be the
same as above up to a factor of

∏
i Si in the denominator.

V. UNITARY-UNITARY DUALITY

The preceding shows how the Schur transform gives
a map between second quantised occupation states and
first quantised single particle states via symmetrisation.
The complication added by distinguishability is that each
single particle becomes bipartite, with a System and La-
bel degree of freedom. As shown above, distinguishabil-
ity arises as correlations between the System and Label

registers of the circuit in Fig. 2. It turns out that inde-
pendently transforming the System and Label registers
back into the Schur basis can give a Schmidt decomposi-
tion for these correlated states (see Fig. 3). This can be
seen as a consequence of the following duality [32, 40].

Theorem 4 (Unitary-unitary duality). The totally sym-
metric irrep of U(md) can be decomposed into irreps of
U(m)×U(d) as

(Cm ⊗ Cd)(n) ∼=
⊕
λ`n

C{λ}m ⊗ C{λ}d , (40)

where {λ}m indicates an irrep λ of U(m), similarly for
{λ}d, and λ runs over all partitions of n consistent with
both m and d.

This can be proven by Schur decomposing the Sys-
tem and Label registers, each of which, by Schur-Weyl
duality, will have good permutation symmetry quantum
numbers. The question is then which linear combinations
of tensor products of such states are totally symmetric,
and the answer turns out to be only states of the form
(suppressing normalisation) [41]

|λ, qλ, q′λ〉SysLab =
∑
pλ

|λ, qλ, pλ〉Sys |λ, q
′
λ, pλ〉Lab . (41)

Thus a basis for the totally symmetric irrep of the
System-Label Hilbert space consists of states of this form,
leading to the decomposition in Eq.(40) and to a Schmidt
decomposition of totally symmetric (second quantised)
System-Label states.

Because the Schur transformations on each register are
local to the System and Label, entanglement across this
bipartition is unchanged. For example, the completely
distinguishable state that from Eq.(32) is seen to have
Schmidt rank n! in the computational basis, and there-
fore must be of the form

1√
n!

∑
λ`n

∑
qcoinλ

∑
pλ

|λ, qλ, pλ〉Sys|λ, qλ, pλ〉Lab, (42)

where the sum over qcoin
λ is taken over the coincident sub-

space, that is, the irrep basis states with pattern weight
(or type) (11 · · · 1). That the dimensions of these spaces
are the same can be shown combinatorially and follows
from the theorem. This shows that although in the ideal
case only the symmetric subspace is in play and therefore
the full Schur transform is overkill, for the distinguishable
case all irreps λ can play a role.
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|(n)〉

|q(n)〉

|p(n) = 1〉

W †

|ψ1,Sys〉 U

U

U

...

|ψ2,Sys〉

|ψn,Sys〉

|ψ
1,Lab〉

...

|ψ
2,Lab〉

|ψ
n,Lab〉

...

W

W

|λSys〉

|U · qλ,Sys〉

|pλ,Sys〉

|λLab〉

|q
λ,Lab〉

|pλ,Lab〉

λ = (n)

{λ}

...

T
S ′

FIG. 3. Circuit diagram illustrating how postselection can be
used to ‘filter out’ distinguishability. Note that the postse-
lection measurement of the System λ-register is in the irrep
basis, while that of the System q-register is in the GZ basis.
The Schur transform on the Label register is not necessary,
but illustrates the unitary-unitary duality.

A. Postselection of ideal bosonic sampling

Although unitary-unitary duality can be demonstrated
in this model by implementing local Schur transforms
before measuring, in both the ideal and distinguishable
case circuits considered previously, it was argued that
this was not necessary; it was enough to measure in the
computational basis after the unitary transformation was
implemented and post-process. An interesting observa-
tion is that given a distinguishable input, by performing
the second Schur transform on the System it becomes
possible to use postselection to sample from the indistin-
guishable distribution. Of course, this comes at the cost
of throwing away a lot of bad samples.

To achieve this postselective filtering, we need to en-
sure that we only sample the System from the fully sym-
metric irrep of U(m). This is done by measuring the irrep
register |λ〉Sys and waiting for the outcome λSys = (n).
After postselection, the amplitudes of the System q-
register |U · q(n)〉 are given by Eq. 13, which give the
same probability distribution as sampling indistinguish-
able bosons. Following the arguments above, the circuit
remains efficient since the added Schur transform can be
implemented efficiently.

More generally, such a postselected quantum circuit
could sample from any irrep λ of U(m). All we need to
achieve this is to ensure that the input state has sup-
port in the irrep we wish to sample from, and postse-
lect on being in that irrep. A dimension counting ar-
gument shows that the completely distinguishable input
discussed above has support in all irreps [42], and so could
be used for this purpose.

VI. SAMPLING WITH LOSS

Another serious practical difficulty with linear optics
is the loss of photons through unwanted scattering pro-

|(n+ k)〉

|q(n+k)〉

|p(n+k) = 1〉

W †

|ψ1〉 U

U

U

...

|ψ2〉

|ψn〉

Z

Z

Z

...
...

|ψn+1〉
...

|ψn+k〉

S S ′

FIG. 4. Circuit for sampling when k bosons are lost. Here,
we ignore k qudits of the System register, tracing them out
with the Label register. As with Fig. 2, measurements are in
the computational basis.

cesses. In this section, we discuss how the loss model
developed by Aaronson and Brod [43] can be simulated.
In their model, n+k bosons are generated as occupation
S0, k of which are lost before they reach the interferome-
ter. As we don’t know which bosons were lost, Aaronson
and Brod take the average over the set of all n-boson oc-
cupations which are consistent with S0, denoted Λ̄m,S0,n.
The result can be shown by tracing out any choice of k
qudits in the ideal case, as shown in Fig. 4.

Theorem 5. Let |ψ〉 be the state after step 2 of Algo-
rithm 1 with (n + k)-boson input state S0, and Λ̄m,S0,n

be the set of all n-boson occupations which are consistent
with S0. If k qudits of |ψ〉 are traced out before contin-
uing with the algorithm, the final probability distribution
of output occupations S′, denoted DU , is

PrDU [S′] =
1(
n+k
k

) ∑
S∈Λ̄m,S0,n

|per(US′,S)|2
m∏
i=1

(
S0
i
Si

)
S′i!Si!

.

(43)

Proof. The state |ψ〉 can be written as the density matrix

ρ = |ψ〉〈ψ| = 1

(n+ k)!
∏m
i=1 S

0
i !

∑
σ∈Sn+k

σ|s0〉
∑

σ′∈Sn+k

〈s0|σ′†,

(44)
where |s0〉 is any state consistent with the input state
occupation S0. This state is symmetric, so the choice of
which qudits to trace out is moot. Choosing the last k
qudits, the reduced density matrix for the remaining n
particles is
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ρn =
1

(n+ k)!
∏m
i=1 S

0
i !

∑
σ,σ′∈Sn+k

n⊗
l=1

|s0
σ−1(l)〉〈s

0
σ′−1(l)|

n+k⊗
l=n+1

〈s0
σ′−1(l)|s

0
σ−1(l)〉 (45)

=
1

(n+ k)!
∏m
i=1 S

0
i !

∑
S⊆{s01,...,s

0
n+k}

S̄={s01,...,s
0
n+k}\S

|S|=n

∑
σ∈Sn

σ|s〉
∑
σ′∈Sn

〈s|σ′†
∑

τ,τ ′∈Sk

〈s̄|τ ′†τ |s̄〉 (46)

=
1

(n+ k)!
∏m
i=1 S

0
i !

∑
S∈Λm,S0,n

S̄={s01,...,s
0
n+k}\S

m∏
i=1

(
S0
i !

Si!(S0
i − Si)!

)2 ∑
σ∈Sn

σ|s〉
∑
σ′∈Sn

〈s|σ′†
∑

τ,τ ′∈Sk

〈s̄|τ ′†τ |s̄〉 (47)

=
k!

(n+ k)!

∑
S∈Λm,S0,n

∏m
i=1 S

0
i !

(
∏m
j=1 Sj !)

2
∏m
i=1(S0

i − Si)!
∑
σ∈Sn

σ|s〉
∑
σ′∈Sn

〈s|σ′† (48)

=
1(
n+k
n

) ∑
S∈Λm,S0,n

∏m
i=1

(
S0
i
Si

)
n!
∏m
j=1 Sj !

∑
σ∈Sn

σ|s〉
∑
σ′∈Sn

〈s|σ′†, (49)

where now |s〉 (resp. |s̄〉) is any state consistent with the
occupation S (resp. S̄). In this calculation we first break
the qudits into multisets of S and S̄ with respective sizes
n and k, and permute each multiset individually, which
is done in Eq.(46). Note that S ⊆ {s0

1, . . . , s
0
n+k} such

that |S| = n implies that S ∈ Λm,S0,n defined above,
so we can sum over Λm,S0,n. However, doing so will ig-
nore duplicates of S we had when considering multisets
included in {s0

1, . . . , s
0
n+k}, which need to be acconted

for. The total number of duplicate terms is the number
of permutations σ, σ′ ∈ Sn+k for which |s0〉 is invari-
ant, of which there are (

∏m
i=1 S

0
i !)2. The permutations

σ, σ′ ∈ Sn and τ, τ ′ ∈ Sk mean that (
∏m
i=1 Si!(S

0
i −Si)!)2

duplicates are already accounted for. Putting these two
points together, we get the factor seen in Eq.(47). Fi-
nally in Eq.(48), we take the inner product, noting that∑
τ,τ ′∈Sk

〈s̄|τ ′†τ |s̄〉 = k!
∏m
i=1(S0

i − Si)!.
Applying the unitary transformation U and measuring

in the computational basis, we find that the calculation
of the probability of measuring a state |s′〉 ∈ (Cm)⊗n

goes through much as in the previous sections. Applying
the same methods as before, we have

Pr[|s′〉] (50)

= Tr[|s′〉〈s′|(U)⊗nρn(U†)⊗n] (51)

=
1(
n+k
n

) ∑
S∈Λ̄m,n+k,n

∏m
i=1

(
S0
i
Si

)
n!
∏m
j=1 Sj !

∣∣∣∣∣〈s′|U⊗n
(∑
σ∈Sn

σ|s〉

)∣∣∣∣∣
2

(52)

=
1(
n+k
n

) ∑
S∈Λ̄m,n+k,n

|per(US′,S)|2
m∏
i=1

(
S0
i
Si

)
n!Si!

. (53)

To find the probability of sampling occupation S′, we
add together the probabilities for all computational basis

states |s′〉 that map to S′, of which there are n!/
∏m
i=1 S

′
i!.

This gives us the desired probability distribution.

Combining loss with distinguishability can be simu-
lated by splitting the remaining n qudits in the state
given by Eq.(49) into System and Label registers, and
tracing out the Label. This would result in similar av-
erages over the lossless cases described in the sections
above.

VII. DISTINGUISHABILITY AND
SIMULATEABILITY

Our model of distinguishability as correlations with
the Label register gives an explicit decoherence model
for the computation on the System register. A natural
question is to ask at what point this decoherence ren-
ders the quantum computation classically simulateable.
There is a large amount of literature surrounding clas-
sical simulation of mixed state quantum computing [44–
46], and the role of entanglement [47–51]. We’ve already
seen that when the input is completely distinguishable,
the output distribution is given by the permanents of
positive matrices, Eq.(39), which can be approximated
in polynomial time [52]. This efficient permanent ap-
proximation method can be used with Clifford and Clif-
ford’s algorithm [15] to produce a polynomial runtime for
approximate sampling. Another method for efficiently
simulating fully distinguishable photons is to simulate
each photon going through the interferometer individu-
ally [14, 16].

The discussion up to this point shows that results on
the classical simulation of the Schur transform would al-
low us to answer this question, but general results along
these lines are to the best of our knowledge not available.
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As mentioned above, one way to approach the question
is to consider the multipartite entanglement properties of
the mixed state of the System that results after tracing
the Label.

Without a specific noise model, there are several mixed
states we could consider; an obvious one is a mixture of
the ideal and completely indistinguishable states

ρε =ε

(∑
σ∈Sn

σ|s〉
√
n!

)(∑
τ∈Sn
〈s|τ †

√
n!

)
(54)

+ (1− ε)

(∑
σ∈Sn

σ|s〉〈s|σ†

n!

)
. (55)

Equation (32) tells us that the completely indistinguish-

able state is maximally mixed on the coincident sub-
space, and it has been shown that states of the form
ε |ψ〉 〈ψ| + (1 − ε)1l/d are separable for sufficiently small
ε [53, 54], where 1l/d is the completely mixed state on the
entire space (the tensor product (Cm)⊗n). It is there-
fore tempting to conclude that there is a measurable set
of states near the completely indistinguishable state that
are separable. However, the completely indistinguishable
state only has support on the coincident subspace, which
is not a tensor product, and so these results cannot be
applied directly.

We can in fact show that for any ε > 0 the reduced
System state of Eq.(54) is entangled, in that it fails the
partial transpose criterion [55]. This is similar to results
that show a mixture of the totally antisymmetric state
and the projector on the symmetric subspace are entan-
gled for two qudits [56]. Rewrite ρε in the form

ρε =
1

n!

(1− ε)
∑
σ∈Sn

σ|s〉〈s|σ† + ε
∑

σ,τ∈Sn

σ|s〉〈s|τ †
 (56)

=
1

n!

(1− ε)
∑
σ∈Sn

σ|s〉〈s|σ† + ε
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † + ε
∑

σ,τ∈Sn
σ−1(1) 6=τ−1(1)

σ|s〉〈s|τ †

 , (57)

where we have separated the sum over σ and τ into two
sums, based on whether or not σ−1(1) = τ−1(1). Trans-

posing the first qudit will leave the first of these sums
invariant, while always affecting the second. The result-
ing state is

ρT1
ε =

1

n!

(1− ε)
∑
σ∈Sn

σ|s〉〈s|σ† + ε
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † + ε
∑

σ,τ∈Sn
σ−1(1) 6=τ−1(1)

|sτ−1(1)〉〈sσ−1(1)|
n⊗
i=2

|sσ−1(i)〉〈sτ−1(i)|


(58)

To work out the trace norm of this density matrix, we
need to multiply it by its transpose. We can compute

√
ρT1
ε ρ

T1†
ε as follows:

1

n!

(1− ε)2
∑
σ∈Sn

σ|s〉〈s|σ† + 2(1− ε)ε
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † + ε2
∑

σ,τ,υ,χ∈Sn
σ−1(1)=τ−1(1)

υ−1(1)=χ−1(1)

σ|s〉〈s|τ †χ|s〉〈s|υ† (59)
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+ε
∑

σ,τ,υ,χ∈Sn
σ−1(1) 6=τ−1(1)

υ−1(1) 6=χ−1(1)

|sτ−1(1)〉〈sσ−1(1)|sυ−1(1)〉〈sχ−1(1)|
n⊗
i=2

|sσ−1(i)〉〈sτ−1(i)|sχ−1(i)〉〈sυ−1(i)|


1/2

(60)

=
1

n!

(1− ε)2
∑
σ∈Sn

σ|s〉〈s|σ† + 2(1− ε)ε
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † (61)

+ε2(n− 1)!
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † +ε
∑

σ,τ,υ∈Sn
σ−1(1) 6=τ−1(1)

σ−1(1)=υ−1(1)

|sτ−1(1)〉〈sτ−1(1)|
n⊗
i=2

|sσ−1(i)〉〈sυ−1(i)|


1/2

(62)

=
1

n!

(1− ε)
∑
σ∈Sn

σ|s〉〈s|σ† + ε
∑

σ,τ∈Sn
σ−1(1)=τ−1(1)

σ|s〉〈s|τ † +
ε

(n− 1)!

∑
σ,τ,υ∈Sn

σ−1(1) 6=τ−1(1)

σ−1(1)=υ−1(1)

|sτ−1(1)〉〈sτ−1(1)|
n⊗
i=2

|sσ−1(i)〉〈sυ−1(i)|

 .

(63)

From this we can work out the trace norm as

‖ρT1
ε ‖∗ = Tr

[√
ρT1
ε ρ

T1†
ε

]
(64)

=
1

n!

(
(1− ε)n! + εn! +

ε

(n− 1)!
(n− 1)n!(n− 1)!

)
(65)

= 1− ε+ ε+ ε(n− 1) (66)

= 1 + ε(n− 1). (67)

Here, the (1− ε)n! and εn! terms come from the trace of
the first two terms. The third term comes from Eq.(63),
the trace of which one can think of as the number of
ways we can pick permutations σ, τ ∈ Sn such that
σ−1(1) 6= τ−1(1). This can be worked out by choos-
ing any permutation σ ∈ Sn, and constructing τ by first
choosing τ−1(1) 6= σ−1(1) and choosing τ−1(i) for i > 1
to be a permutation in Sn−1. Thus the overall number is
(n− 1)n!(n− 1)!.

We can see that the trace norm of ρT1
ε therefore fails the

generalised partial transposition criterion for separability
if n > 1 and ε > 0. Note that this does not imply that
efficiently sampling from unitary actions on such states
is not classically possible for any nonzero ε, merely that
techniques used for simulating separable states cannot be
used for exact sampling in this case.

VIII. CONCLUSION

We have described how to use the Schur transform to
perform a quantum simulation of bosonic sampling when
the bosons are arbitrarily distinguishable. These results
make it clear that ideal n boson, m mode linear inter-
ferometry is equivalent to a transversal n qudit quantum
circuit, with the constraint that the input must be totally
symmetric – that is, the ordering of the qudits must be
erased. Moreover, we can introduce nonideal aspects into
the quantum simulation by tracing out qudits (loss), or
introducing ancillas and entanglement (distinguishabil-
ity). A recently released paper focusing on the issue of
loss in more detail makes similar connections [57].

A broad aim of future research along this approach is
to better understand how the computational complex-
ity of sampling from photons changes as photons become
more distinguishable. By better understanding of how
these intermediate levels of distinguishability link to rep-
resentation theory, the hope is that it will be easier to
find either classical algorithms for these cases similarly to
Clifford and Clifford [15], or in finding reductions to sam-
pling imminants [58] much as Aaronson and Arkhipov
focused on permanents. Indeed, recent work by Havĺıc̆ek
and Strelchuk has demonstrated the potential for the use
of the Schur transform in understanding the complexity
of sampling problems [59].
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