35,635 research outputs found

    Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation

    Full text link
    Context: Radiative feedback plays a crucial role in the formation of massive stars. The implementation of a fast and accurate description of the proceeding thermodynamics in pre-stellar cores and evolving accretion disks is therefore a main effort in current hydrodynamics simulations. Aims: We introduce our newly implemented three-dimensional frequency dependent radiation transport algorithm for hydrodynamics simulations of spatial configurations with a dominant central source. Methods: The module combines the advantage of the speed of an approximate Flux Limited Diffusion (FLD) solver with the high accuracy of a frequency dependent first order ray-tracing routine. Results: We prove the viability of the scheme in a standard radiation benchmark test compared to a full frequency dependent Monte-Carlo based radiative transfer code. The setup includes a central star, a circumstellar flared disk, as well as an envelope. The test is performed for different optical depths. Considering the frequency dependence of the stellar irradiation, the temperature distributions can be described precisely in the optically thin, thick, and irradiated transition regions. Resulting radiative forces onto dust grains are reproduced with high accuracy. The achievable parallel speedup of the method imposes no restriction on further radiative (magneto-) hydrodynamics simulations. Conclusions: The proposed approximate radiation transport method enables frequency dependent radiation hydrodynamics studies of the evolution of pre-stellar cores and circumstellar accretion disks around an evolving massive star in a highly efficient and accurate manner.Comment: 16 pages, 11 figure

    Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

    Get PDF
    We present a mathematical framework for constructing and analyzing parallel algorithms for lattice Kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. The algorithms can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). The proposed parallel algorithms are controlled-error approximations of kinetic Monte Carlo algorithms, departing from the predominant paradigm of creating parallel KMC algorithms with exactly the same master equation as the serial one. Our methodology relies on a spatial decomposition of the Markov operator underlying the KMC algorithm into a hierarchy of operators corresponding to the processors' structure in the parallel architecture. Based on this operator decomposition, we formulate Fractional Step Approximation schemes by employing the Trotter Theorem and its random variants; these schemes, (a) determine the communication schedule} between processors, and (b) are run independently on each processor through a serial KMC simulation, called a kernel, on each fractional step time-window. Furthermore, the proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules.Comment: 34 pages, 9 figure
    corecore