400 research outputs found

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    Lifted Variable Elimination for Probabilistic Logic Programming

    Full text link
    Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relational languages outside of logic programming. In this paper we adapt Generalized Counting First Order Variable Elimination (GC-FOVE) to the problem of computing the probability of queries to probabilistic logic programs under the distribution semantics. In particular, we extend the Prolog Factor Language (PFL) to include two new types of factors that are needed for representing ProbLog programs. These factors take into account the existing causal independence relationships among random variables and are managed by the extension to variable elimination proposed by Zhang and Poole for dealing with convergent variables and heterogeneous factors. Two new operators are added to GC-FOVE for treating heterogeneous factors. The resulting algorithm, called LP2^2 for Lifted Probabilistic Logic Programming, has been implemented by modifying the PFL implementation of GC-FOVE and tested on three benchmarks for lifted inference. A comparison with PITA and ProbLog2 shows the potential of the approach.Comment: To appear in Theory and Practice of Logic Programming (TPLP). arXiv admin note: text overlap with arXiv:1402.0565 by other author

    Probabilistic inference in SWI-Prolog

    Get PDF
    Probabilistic Logic Programming (PLP) emerged as one of the most prominent approaches to cope with real-world domains. The distribution semantics is one of most used in PLP, as it is followed by many languages, such as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions (LPADs) and ProbLog. A possible system that allows performing inference on LPADs is PITA, which transforms the input LPAD into a Prolog program containing calls to library predicates for handling Binary Decision Diagrams (BDDs). In particular, BDDs are used to compactly encode explanations for goals and efficiently compute their probability. However, PITA needs mode-directed tabling (also called tabling with answer subsumption), which has been implemented in SWI-Prolog only recently. This paper shows how SWI-Prolog has been extended to include correct answer subsumption and how the PITA transformation has been changed to use SWI-Prolog implementation

    Probabilistic (logic) programming concepts

    Get PDF
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years

    Inference in Probabilistic Logic Programs Using Lifted Explanations

    Get PDF
    In this paper, we consider the problem of lifted inference in the context of Prism-like probabilistic logic programming languages. Traditional inference in such languages involves the construction of an explanation graph for the query that treats each instance of a random variable separately. For many programs and queries, we observe that explanations can be summarized into substantially more compact structures introduced in this paper, called "lifted explanation graph". In contrast to existing lifted inference techniques, our method for constructing lifted explanations naturally generalizes existing methods for constructing explanation graphs. To compute probability of query answers, we solve recurrences generated from the lifted graphs. We show examples where the use of our technique reduces the asymptotic complexity of inference

    Learning Effect Axioms via Probabilistic Logic Programming

    Get PDF
    In this paper we showed how we can automatically learn the structure and parameters of probabilistic effect axioms for the Simple Event Calculus (SEC) from positive and negative example interpretations stated as short dialogue sequences in natural language. We used the cplint framework for this task that provides libraries for structure and parameter learning and for answering queries with exact and inexact inference. The example dialogues that are used for learning the structure of the probabilistic logic program are parsed into dependency structures and then further translated into the Event Calculus notation with the help of a simple ontology. The novelty of our approach is that we can not only process uncertainty in event recognition but also learn the structure of effect axioms and combine these two sources of uncertainty to successfully answer queries under this probabilistic setting. Interestingly, our extension of the logic-based version of the SEC is completely elaboration-tolerant in the sense that the probabilistic version fully includes the logic-based version. This makes it possible to use the probabilistic version of the SEC in the traditional way as well as when we have to deal with uncertainty in the observed world. In the future, we would like to extend the probabilistic version of the SEC to deal -- among other things -- with concurrent actions and continuous change
    • …
    corecore