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Abstract
In this paper, we consider the problem of lifted inference in the context of Prism-like probabilistic
logic programming languages. Traditional inference in such languages involves the construction of
an explanation graph for the query that treats each instance of a random variable separately. For
many programs and queries, we observe that explanations can be summarized into substantially
more compact structures introduced in this paper, called “lifted explanation graphs”. In contrast
to existing lifted inference techniques, our method for constructing lifted explanations naturally
generalizes existing methods for constructing explanation graphs. To compute probability of
query answers, we solve recurrences generated from the lifted graphs. We show examples where
the use of our technique reduces the asymptotic complexity of inference.
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1 Introduction

Probabilistic Logic Programming (PLP) provides a declarative programming framework to
specify and use combinations of logical and statistical models. A number of programming
languages and systems have been proposed and studied under the framework of PLP,
e.g. PRISM [12], Problog [4], PITA [11] and Problog2 [5] etc. These languages have similar
declarative semantics based on the distribution semantics [13]. The inference algorithms used
in many of these systems to evaluate the probability of query answers, e.g. PRISM, Problog
and PITA, are based on a common notion of explanation graphs. These graphs represent
explanations, which are sets of probabilistic choices that are abduced during query evaluation.
Explanation graphs are implemented differently by different systems; e.g. PRISM uses tables
to represent them under mutual exclusion and independence assumptions on explanations;
ProbLog and PITA represents them using Binary Decision Diagrams (BDDs).

Inference based on explanation graphs does not scale well to logical/statistical models with
large numbers of random processes and variables. In particular, in models containing families
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15:2 Inference in Probabilistic Logic Programs Using Lifted Explanations

1 % Two distinct tosses show "h"
2 twoheads :-
3 X in coins,
4 msw(toss, X, h),
5 Y in coins,
6 {X < Y},
7 msw(toss, Y, h).
8

9 % Cardinality of coins:
10 :- population(coins, 100).
11

12 % Distribution parameters:
13 :- set_sw(toss,
14 categorical([h:0.5, t:0.5])).
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(a) Simple Px program (b) Ground expl. Graph (c) Lifted expl. Graph

Figure 1 Example program and ground explanation graph.

of independent, identically distributed (i.i.d) random variables, outcomes of individual random
variables are abduced. However, as developments in the area of lifted inference [10, 2, 7]
have shown, vast savings in computational effort can be made by exploiting the symmetry in
models with populations of i.i.d random variables. The lifted inference algorithms seek to
treat a set of i.i.d random variables as single unit and aggregate their behavior to achieve
computational speedup. This paper presents a structure for representing explanation graphs
compactly by exploiting the symmetry with respect to i.i.d random variables, and a procedure
to build this structure without enumerating each instance of a random process.

Illustration. The simple example in Fig. 1 shows a program describing a process of tossing
a number of i.i.d. coins, and evaluating if at least two of them came up “heads”. The
example is specified in an extension of the PRISM language, called Px. Explicit random
processes of PRISM enables a clearer exposition of our approach. In PRISM and Px, a
special predicate of the form msw(p, i, v) describes, given a random process p that defines
a family of i.i.d. random variables, that v is the value of the i-th random variable in the
family. The argument i of msw is called the ith instance argument. In this paper, we consider
Param-Px, a further extension of Px to define parameterized programs. In Param-Px, a
built-in predicate, in is used to specify membership; e.g. x in s means x is member of an
enumerable set s. The size of s is specified by a separate population directive. The program
in Fig. 1 defines a family of random variables generated by toss. The instances that index
these random variables are drawn from the set coins. Finally, predicate twoheads is defined
to hold if tosses of at least two distinct coins come up “h”.

State of the Art, and Our Solution. Inference in PRISM, Problog and PITA follows the
structure of the derivations for a query. Consider the program in Fig. 1(a) and let the
cardinality of the set of coins be n. The query twoheads will take Θ(n2) time, since it will
construct bindings to both X and Y in the clause defining twoheads. However, the size of an
explanation graph is Θ(n), as shown in Fig. 1(b). Computing the probability of the query
over this graph will also take Θ(n) time.

In this paper, we present a technique to construct a symbolic version of an explanation
graph, called a lifted explanation graph that represents instances symbolically and avoids
enumerating the instances of random processes such as toss. The lifted explanation graph
for query twoheads is shown in Fig. 1(c). Unlike traditional explanation graphs where nodes
are specific instances of random variables, nodes in the lifted explanation graph may be
parameterized by their instance (e.g (toss, X) instead of (toss, 1)). A set of constraints on
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f1(n) = h1(1, n)

h1(i, n) =
{

g1(i, n) + (1− f̂1) · h1(i+ 1, n) if i < n

g1(i, n) if i = n

g1(i, n) = π · f2(i, n)
f̂1 = π

f2(i, n) =
{

h2(i+ 1, n) if i < n

0 otherwise

h2(j, n) =
{

g2 + (1− f̂2) · h2(j + 1, n) if j < n

g2 if j = n

g2 = π

f̂2 = π

Figure 2 Recurrences for computing probabilities for Example in Fig. 1.

those variables, specify the allowed groundings.
Note that the graph size is independent of the size of the population. Moreover, the

graph can be constructed in time independent of the population size as well. Probability
computation is performed by first deriving recurrences based on the graph’s structure and
then solving the recurrences. The recurrences for probability computation derived from the
graph in Fig. 1(c) are shown in Fig. 2. In the figure, the equations with subscript 1 are
derived from the root of the graph; those with subscript 2 from the left child of the root; and
where π is the probability that toss is “h”. Note that the probability of the query, f1(n),
can be computed in Θ(n) time from the recurrences.

Contributions. The technical contribution of this paper is two fold.
1. We define a lifted explanation structure, and operations over these structures (see

Section 3). We also give method to construct such structures during query evaluation,
closely following the techniques used to construct explanation graphs.

2. We define a technique to compute probabilities over such structures by deriving and
solving recurrences (see Section 4). We provide examples to illustrate the complexity
gains due to our technique over traditional inference.

The rest of the paper begins by defining parameterized Px programs and their semantics
(Section 2). After presenting the main technical work, the paper concludes with a discussion
of related work. (Section 5).

2 Parameterized Px Programs

The PRISM language follows Prolog’s syntax. It adds a binary predicate msw to introduce
random variables into an otherwise familiar Prolog program. Specifically, in msw(s, v), s is
a “switch” that represents a random process which generates a family of random variables,
and v is bound to the value of a variable in that family. The domain and distribution of
the switches are specified by set_sw directives. Given a switch s, we use Ds to denote the
domain of s, and πs : Ds → [0, 1] to denote its probability distribution.

2.1 Px and Inference
The Px language extends the PRISM language in three ways. Firstly, the msw switches in Px
are ternary, with the addition of an explicit instance parameter. This brings the language
closer to the formalism presented when describing PRISM’s semantics [13]. Secondly, Px
aims to compute the distribution semantics without the mutual exclusion and independence
assumptions on explanations imposed by PRISM system. Thirdly, in contrast to PRISM,
the switches in Px can be defined with a wide variety of univariate distributions, including
continuous distributions (such as Gaussian) and infinite discrete distributions (such as
Poisson). However, in this paper, we consider only programs with finite discrete distributions.

ICLP 2016 TCs



15:4 Inference in Probabilistic Logic Programs Using Lifted Explanations

Exact inference of Px programs with finite discrete distributions uses explanation graphs
with the following structure.

I Definition 1 (Ground Explanation Graph). Let S be the set of ground switches in a Px
program P , and Ds be the domain of switch s ∈ S. Let T be the set of all ground terms
over symbols in P . Let “≺” be a total order over S × T such that (s1, t1) ≺ (s2, t2) if either
t1 < t2 or t1 = t2 and s1 < s2. A ground explanation tree over P is a rooted tree γ such that:

Leaves in γ are labeled 0 or 1.
Internal nodes in γ are labeled (s, z) where s ∈ S is a switch, and z is a ground term over
symbols in P .
For node labeled (s, z), there are k outgoing edges to subtrees, where k = |Ds|. Each
edge is labeled with a unique v ∈ Ds.
Let (s1, z1), (s2, z2), . . . , (sk, zk), c be the sequence of node labels in a root-to-leaf path in
the tree, where c ∈ {0, 1}. Then (si, zi) ≺ (sj , zj) if i < j for all i, j ≤ k. As a corollary,
node labels along any root to leaf path in the tree are unique.

An explanation graph is a DAG representation of a ground explanation tree.

Consider a sequence of alternating node and edge labels in a root-to-leaf path:
(s1, z1), v1, (s2, z2), v2, . . . , (sk, zk), vk, c. Each such path enumerates a set of random variable
valuations {s1[z1] = v1, s2[z2] = v2, . . . , sk[zk] = vk}. When c = 1, the set of valuations forms
an explanation. An explanation graph thus represents a set of explanations.

Note that explanation trees and graphs resemble decision diagrams. Indeed, explanation
graphs are implemented using Binary Decision Diagrams [3] in PITA and Problog; and
Multi-Valued Decision Diagrams [15] in Px. The union of two sets of explanations can
be seen as an “or” operation over corresponding explanation graphs. Pair-wise union of
explanations in two sets is an “and” operation over corresponding explanation graphs.

2.1.1 Inference via Program Transformation
Inference in Px is performed analogous to that in PITA [11]. Concretely, inference is done by
translating a Px program to one that explicitly constructs explanation graphs, performing
tabled evaluation of the derived program, and computing probability of answers from the
explanation graphs. We describe the translation for definite pure programs; programs with
built-ins and other constructs can be translated in a similar manner.

For every user-defined atom A of the form p(t1, t2, . . . , tn), we define exp(A,E) as atom
p(t1, t2, . . . , tn, E) with a new predicate p/(n + 1), with E as an added “explanation” ar-
gument. For such atoms A, we also define head(A,E) as atom p′(t1, t2, . . . , tn, E) with
a new predicate p′/(n + 1). A goal G is a conjunction of atoms, where G = (G1, G2)
for goals G1 and G2, or G is an atom A. Function exp is extended to goals such that
exp((G1, G2)) = ((exp(G1, E1), exp(G2, E2)), and(E1, E2, E)), where and is a predicate in the
translated program that combines two explanations using conjunction, and E1 and E2 are
fresh variables. Function exp is also extended to msw atoms such that exp(msw(p, i, v), E) is
rv(p, i, v, E), where rv is a predicate that binds E to an explanation graph with root labeled
(p, i) with an edge labeled v leading to a 1 child, and all other edges leading to 0.

Each clause of the form A :− G in a Px program is translated to a new clause
head(A,E) :− exp(G,E). For each predicate p/n, we define p(X1, X2, . . . Xn, E) to be
such that E is the disjunction of all E′ for p′(X1, X2, . . . Xn, E

′). As in PITA, this is done
using answer subsumption.

Probability of an answer is determined by first materializing the explanation graph, and
then computing the probability over the graph. The probability associated with a node in
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the graph is computed as the sum of the products of probabilities associated with its children
and the corresponding edge probabilities. The probability associated with an explanation
graph ϕ, denoted prob(ϕ) is the probability associated with the root. This can be computed
in time linear in the size of the graph by using dynamic programming or tabling.

2.2 Syntax and Semantics of Parameterized Px Programs
Parameterized Px, called Param-Px for short, is a further extension of the Px language.
The first feature of this extension is the specification of populations and instances to specify
ranges of instance parameters of msws.

I Definition 2 (Population). A population is a named finite set, with a specified cardinality.
A population has the following properties:
1. Elements of a population may be atomic, or depth-bounded ground terms.
2. Elements of a population are totally ordered using the default term order.
3. Distinct populations are disjoint.

Populations and their cardinalities are specified in a Param-Px program by population
facts. For example, the program in Figure 1(a) defines a population named coins of size 100.
The individual elements of this set are left unspecified. When necessary, element/2 facts
may be used to define distinguished elements of a population. For example, element(fred,
persons) defines a distinguished element “fred” in population persons. In presence of
element facts, elements of a population are ordered as follows. The order of element facts
specifies the order among the distinguished elements, and all distinguished elements occur
before other unspecified elements in the order.

I Definition 3 (Instance). An instance is an element of a population. In a Param-Px program,
a built-in predicate in/2 can be used to draw an instance from a population. All instances
of a population can be drawn by backtracking over in.

An instance variable is one that occurs as the instance argument in a msw predicate in a
clause of a Param-Px program. In Fig. 1(a), X in coins binds X to an instance of population
coins and X, Y are instance variables.

Constraints. The second extension in Param-Px are atomic constraints, of the form {t1 =
t2}, {t1 6= t2} and {t1 < t2}, where t1 and t2 are variables or constants, to compare instances
of a population. We use braces “{·}” to distinguish the constraints from Prolog built-in
comparison operators. In Figure 1(a), {X \= Y} is an atomic constraint.

Types. We use populations in a Param-Px program to confer types to program variables.
Each variable that occurs in an “in” predicate is assigned a unique type. More specifically,
X has type p if X in p occurs in a program, where p is a population; and X is untyped
otherwise. We extend this notion of types to constants and switches as well. A constant c
has type p if there is a fact element(c, p); and c is untyped otherwise. A switch s has type
p if there is an msw(s, X, t) in the program and X has type p; and s is untyped otherwise.

I Definition 4 (Well-typedness). A Param-Px program is well-typed if:
1. For every constraint in the program of the form {t1 = t2}, {t1 6= t2} or {t1 < t2}, the

types of t1 and t2 are identical.
2. Types of arguments of every atom on the r.h.s. of a clause are identical to the types of

corresponding parameters of l.h.s. atoms of matching clauses.
3. Every switch in the program has a unique type.

ICLP 2016 TCs



15:6 Inference in Probabilistic Logic Programs Using Lifted Explanations

The first two conditions of well-typedness ensure that only instances from the same
population are compared in the program. The last condition imposes that instances of
random variables generated by switch s are all indexed by elements drawn from the same
population. In the rest of the paper, unless otherwise specified, we assume all Param-Px
programs under consideration are well-typed.

Semantics of Param-Px Programs. Each Param-Px program can be readily transformed
into a non-parameterized “ordinary” Px program. Each population fact is used to generate a
set of in/2 facts enumerating the elements of the population. Other constraints are replaced
by their counterparts is Prolog: e.g. {X < Y } with X<Y . Finally, each msw(s,i,t) is
preceded by i in p where p is the type of s. The semantics of the original parameterized
program is defined by the semantics of the transformed program.

3 Lifted Explanations

In this section we formally define lifted explanation graphs. These are a generalization of
ground explanation graphs defined earlier, and are introduced in order to represent ground
explanations compactly. Constraints over instances form a basic building block of lifted
explanations and the following constraint language is used for the purpose.

3.1 Constraints on Instances

I Definition 5 (Instance Constraints). Let V be a set of instance variables, with subranges
of integers as domains, such that m is the largest positive integer in the domain of any
variable. Atomic constraints on instance variables are of one of the following two forms:
X < aY ± k, X = aY ± k, where X,Y ∈ V, a ∈ 0, 1, where k is a non-negative integer
≤ m+ 1. The language of constraints over bounded integer intervals, denoted by L(V,m),
is a set of formulae η, where η is a non-empty set of atomic constraints representing their
conjunction.

Note that each formula in L(V,m) is a convex region in Z|V |, and hence is closed under
conjunction and existential quantification.

Let vars(η) be the set of instance variables in an instance constraint η. A substitution
σ : vars(η)→ [1..m] that maps each variable to an element in its domain is a solution to η if
each constraint in η is satisfied by the mapping. The set of all solutions of η is denoted by
[[η]]. The constraint formula η is unsatisfiable if [[η]] = ∅. We say that η |= η′ if every σ ∈ [[η]]
is a solution to η′.

Note also that instance constraints are a subclass of the well-known integer octagonal
constraints [8] and can be represented canonically by difference bound matrices (DBMs) [18, 6],
permitting efficient algorithms for conjunction and existential quantification. Given a
constraint on n variables, a DBM is a (n+1)× (n+1) matrix with rows and columns indexed
by variables (and a special “zero” row and column). For variables X and Y , the entry in cell
(X,Y ) of a DBM represents the upper bound on X − Y . For variable X, the value at cell
(X, 0) is X’s upper bound and the value at cell (0, X) is the negation of X’s lower bound.

Geometrically, each entry in the DBM representing a η is a “face” of the region representing
[[η]]. Negation of an instance constraint η can be represented by a set of mutually exclusive
instance constraints. Geometrically, this can be seen as the set of convex regions obtained by
complementing the “faces” of the region representing [[η]]. Note that when η has n variables,
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the number of instance constraints in ¬η is bounded by the number of faces of [[η]], and hence
by O(n2).

Let ¬η represent the set of mutually exclusive instance constraints representing the
negation of η. Then the disjunction of two instance constraints η and η′ can be represented
by the set of mutually exclusive instance constraints (η ∧ ¬η′) ∪ (η′ ∧ ¬η) ∪ {η ∧ η′}, where
we overload ∧ to represent the element-wise conjunction of an instance constraint with a set
of constraints.

An existentially quantified formula of the form ∃X.η can be represented by a DBM
obtained by removing the rows and columns corresponding to X in the DBM representation
of η. We denote this simple procedure to obtain ∃X.η from η by Q(X, η).

I Definition 6 (Range). Given a constraint formula η ∈ L(V,m), and X ∈ vars(η), let
σX(η) = {v | σ ∈ [[η]], σ(X) = v}. Then range(X, η) is the interval [l, u], where l =
min(σX(η)) and u = max(σX(η)).

Since the constraint formulas represent convex regions, it follows that each variable’s
range will be an interval. Note that range of a variable can be readily obtained in constant
time from the entries for that variable in the zero row and zero column of the constraint’s
DBM representation.

3.2 Lifted Explanation Graphs

I Definition 7 (Lifted Explanation Graph). Let S be the set of ground switches in a Param-Px
program P , Ds be the domain of switch s ∈ S, m be the sum of the cardinalities of all
populations in P and C be the set of distinguished elements of the populations in P . A lifted
explanation graph over variables V is a pair (Ω : η, ψ) which satisfies the following conditions
1. Ω : η is the notation for ∃Ω.η, where η ∈ L(V,m) is either a satisfiable constraint formula,

or the single atomic constraint false and Ω ⊆ vars(η) is the set of quantified variables
in η. When η is false, Ω = ∅.

2. ψ is a singly rooted DAG which satisfies the following conditions
Internal nodes are labeled (s, t) where s ∈ S and t ∈ V ∪ C.
Leaves are labeled either 0 or 1.
Each internal node has an outgoing edge for each outcome ∈ Ds.
If a node labeled (s, t) has a child labeled (s′, t′) then η |= t < t′ or η |= t = t′ and
(s, c) ≺ (s′, c) for any ground term c (see Def. 1).

In this paper ground explanation graphs (Def. 1), and the DAG components of lifted
explanation graphs are represented by textual patterns (s, t)[αi : ψi] where (s, t) is the label
of the root and ψi is the DAG associated with the edge labeled αi. Irrelevant parts may
denoted “_” to reduce clutter. We define the standard notion of bound and free variables
over lifted explanation graphs.

I Definition 8 (Bound and free variables). Given a lifted explanation graph (Ω : η, ψ), a
variable X ∈ vars(η), is called a bound variable if X ∈ Ω, otherwise its called a free variable.

The lifted explanation graph is said to be well-structured if every pair of nodes (s,X)
and (s′, X) with the same bound variable X, have a common ancestor with X as the
instance variable. In the rest of the paper, we assume that the lifted explanation graphs are
well-structured.

ICLP 2016 TCs
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I Definition 9 (Substitution operation). Given a lifted explanation graph (Ω : η, ψ), a variable
X ∈ vars(η), the substitution of X in the lifted explanation graph with a value k from its
domain, denoted by (Ω : η, ψ)[k/X] is defined as follows: If η[k/X] is unsatisfiable, then the
result of the substitution is (∅ : {false}, 0). If η[k/X] is satisfiable, then (Ω : η, ψ)[k/X] =
(Ω \ {X} : η[k/X], ψ[k/X]). The definition of ψ[k/X] is as follows:

((s, t)[αi : ψi])[k/X] = (s, k)[αi : ψi[k/X]], if t = X 0[k/X] = 0
((s, t)[αi : ψi])[k/X] = (s, t)[αi : ψi[k/X]], if t 6= X 1[k/X] = 1

The definition of substitution operation can be generalized to mappings on sets of variables
in the obvious way.

I Lemma 10 (Substitution lemma). If (Ω : η, ψ) is a lifted explanation graph, and X ∈ vars(η),
then (Ω : η, ψ)[k/X] where k is a value in domain of X, is a lifted explanation graph.

When a substitution [k/X] is applied to a lifted explanation graph, and η[k/X] is
unsatisfiable, the result is (∅ : {false}, 0) which is clearly a lifted explanation graph. When
η[k/X] is satisfiable, the variable is removed from Ω and occurrences of X in ψ are replaced
by k. The resultant DAG clearly satisfies the conditions imposed by the Def. 7. Finally
we note that a ground explanation graph φ (Def. 1) is a trivial lifted explanation graph
(∅ : {true}, φ). This constitutes the informal proof of Lemma 10.

3.3 Semantics of Lifted Explanation Graphs
The meaning of a lifted explanation graph (Ω : η, ψ) is given by the ground explanation tree
represented by it.

I Definition 11 (Grounding). Let (Ω : η, ψ) be a closed lifted explanation graph, i.e., it
has no free variables. Then the ground explanation tree represented by (Ω : η, ψ), denoted
Gr((Ω : η, ψ)), is given by the function Gr(Ω, η, ψ). When [[η]] = ∅, then Gr(_, η,_) = 0.
We consider the cases when [[η]] 6= ∅. The grounding of leaves is defined as Gr(_,_, 0) = 0
and Gr(_,_, 1) = 1. When the instance argument of the root is a constant, grounding is
defined as Gr(Ω, η, (s, t)[αi : ψi]) = (s, t)[αi : Gr(Ω, η, ψi)]. When the instance argument is a
bound variable, the grounding is defined as Gr(Ω, η, (s, t)[αi : ψi]) ≡

∨
c∈range(t,η)(s, c)[αi :

Gr(Ω \ {t}, η[c/t], ψi[c/t])].

In the above definition ψ[c/t] represents the tree obtained by replacing every occurrence of t
in the tree with c. The disjunct (s, c)[αi : Gr(Ω \ {t}, η[c/t], ψi[c/t])] in the above definition
is denoted φ(s,c) when the lifted explanation graph is clear from the context.

3.4 Operations on Lifted Explanation Graphs
And/Or Operations. Let (Ω : η, ψ) and (Ω′ : η′, ψ′) be two lifted explanation graphs. We
now define “∧" and “∨” operations on them. The “∧" and “∨” operations are carried out
in two steps. First, the constraint formulas of the inputs are combined. However, the free
variables in the operands may have no known order among them. Since, an arbitrary order
cannot be imposed, the operations are defined in a relational, rather than functional form.
We use the notation (Ω : η, ψ) ⊕ (Ω′ : η′, ψ′) → (Ω′′ : η′′, ψ′′) to denote that (Ω′′ : η′′, ψ′′)
is a result of (Ω : η, ψ)⊕ (Ω′ : η′, ψ′). When an operation returns multiple answers due to
ambiguity on the order of free variables, the answers that are inconsistent with the final
order are discarded. We assume that the variables in the two lifted explanation graphs are
standardized apart such that the bound variables of (Ω : η, ψ) and (Ω′ : η′, ψ′) are all distinct,
and different from free variables of (Ω : η, ψ) and (Ω′ : η′, ψ′). Let ψ = (s, t)[αi : ψi] and
ψ′ = (s′, t′)[α′i : ψ′i].
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Combining constraint formulae
Q(Ω, η) ∧Q(Ω′, η′) is unsatisfiable. Then the orders among free variables in η and η′ are

incompatible.
The ∧ operation is defined as (Ω : η, ψ) ∧ (Ω′ : η′, ψ′)→ (∅ : {false}, 0)
The ∨ operation simply returns the two inputs as outputs:

(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω : η, ψ)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω′ : η′, ψ′)

Q(Ω, η) ∧Q(Ω′, η′) is satisfiable. The orders among free variables in η and η′ are com-
patible

The ∧ operation is defined as (Ω : η, ψ) ∧ (Ω′ : η′, ψ′)→ (Ω ∪ Ω′ : η ∧ η′, ψ ∧ ψ′).
The ∨ operation is defined as

(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η ∧ ¬η′, ψ)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η′ ∧ ¬η, ψ′)
(Ω : η, ψ) ∨ (Ω′ : η′, ψ′)→(Ω ∪ Ω′ : η ∧ η′, ψ ∨ ψ′)

Combining DAGs. Now we describe ∧ and ∨ operations on the two DAGs ψ and ψ′ in the
presence of a single constraint formula. The general form of the operation is (Ω : η, ψ ⊕ ψ′).
Base cases: The base cases are as follows (symmetric cases are defined analogously).

(Ω : η, 0 ∨ ψ′)→ (Ω : η, ψ′) (Ω : η, 0 ∧ ψ′)→ (Ω : η, 0)
(Ω : η, 1 ∨ ψ′)→ (Ω : η, 1) (Ω : η, 1 ∧ ψ′)→ (Ω : η, ψ′)

Recursion: When the base cases do not apply, we try to compare the roots of ψ and ψ′. The
root nodes are compared as follows: We say (s, t) = (s′, t′) if η |= t = t′ and s = s′, else
(s, t) < (s′, t′) (analogously (s′, t′) < (s, t)) if η |= t < t′ or η |= t = t′ and (s, c) ≺ (s′, c)
for any ground term c. If neither of these two relations hold, then the roots are not
comparable and its denoted as (s, t) 6∼ (s′, t′).
a. (s, t) < (s′, t′): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s, t)[αi : ψi ⊕ ψ′])
b. (s′, t′) < (s, t): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s′, t′)[α′i : ψ ⊕ ψ′i])
c. (s, t) = (s′, t′): (Ω : η, ψ ⊕ ψ′)→ (Ω : η, (s, t)[αi : ψi ⊕ ψ′i])
d. (s, t) 6∼ (s′, t′): Operations depend on whether t, t′ are free, bound or constant.

i. t is a free variable or a constant, and t′ is a free variable (the symmetric case is
analogous).

(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t < t′, ψ ⊕ ψ′)
(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t = t′, ψ ⊕ ψ′)
(Ω : η, ψ ⊕ ψ′)→(Ω : η ∧ t′ < t, ψ ⊕ ψ′)

ii. t is a free variable or a constant and t′ is a bound variable (Ω : η, ψ⊕ψ′) is defined
as (the symmetric case is analogous):

(Ω : η ∧ t < t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t′ < t, ψ ⊕ ψ′)

Note that in the above definition, all three lifted explanation graphs use the same
variable names for bound variable t′. Lifted explanation graphs can be easily
standardized apart on the fly, and henceforth we assume that the operation is
applied as and when required.
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iii. t and t′ are bound variables. Let range(t, η) = [l1, u1] and range(t′, η) = [l2, u2].
We can conclude that range(t, η) and range(t′, η) are overlapping, otherwise (s, t)
and (s′, t′) could have been ordered. Without loss of generality, we assume that
l1 ≤ l2. The various cases of overlap and the corresponding definition of the
(Ω : η, ψ ⊕ ψ′) is given in the following table.

l1 = l2, u1 = u2 (Ω ∪ {t′′} : η ∧ l1 − 1 < t′′ ∧ t′′ − 1 < u1 ∧ t′′ < t ∧ t′′ < t′, (s, t′′)[αi :
(ψi[t′′/t]⊕ ψ′

i[t′′/t′]) ∨ (ψi[t′′/t]⊕ ψ′) ∨ (ψ′
i[t′′/t′]⊕ ψ)])

l1 = l2, u1 < u2 (Ω : η ∧ t′ − 1 < u1, ψ ⊕ ψ′) ∨ (Ω : η ∧ u1 < t′, ψ ⊕ ψ′)
l1 = l2, u2 < u1 (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ u2 < t, ψ ⊕ ψ′)
l1 < l2, u1 = u2 (Ω : η ∧ t = t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2, ψ ⊕ ψ′)
l1 < l2, u1 < u2 (Ω : η ∧ u1 < t′, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2 ∧ t′ − 1 < u1, ψ ⊕ ψ′)

∨(Ω : η ∧ t = t′, ψ ⊕ ψ′)
l1 < l2, u2 < u1 (Ω : η ∧ u2 < t, ψ ⊕ ψ′) ∨ (Ω : η ∧ t < l2, ψ ⊕ ψ′)

∨(Ω : η ∧ t = t′, ψ ⊕ ψ′)

I Lemma 12 (Correctness of “∧” and “∨” operations). Let (Ω : η, ψ) and (Ω′ : η′, ψ′)
be two lifted explanation graphs with free variables {X1, X2 . . . , Xn}. Let Σ be the set of
all substitutions mapping each Xi to a value in its domain. Then, for every σ ∈ Σ and
⊕ ∈ {∧,∨}, Gr(((Ω : η, ψ)⊕ (Ω′ : η′, ψ′))σ) = Gr((Ω : η, ψ)σ)⊕Gr((Ω′ : η′, ψ′)σ)

Quantification

I Definition 13 (Quantification). Let (Ω : η, ψ) be a lifted inference graph and X ∈ vars(η).
Then quantify((Ω : η, ψ), X) = (Ω ∪ {X} : η, ψ).

I Lemma 14 (Correctness of quantify). Let (Ω : η, ψ) be a lifted explanation graph, let σ−X
be a substitution mapping all the free variables in (Ω : η, ψ) except X to values in their
domains. Let Σ be the set of mappings σ such that σ maps all free variables to values in
their domains and is identical to σ−X at all variables except X. Then the following holds
Gr(quantify((Ω : η, ψ), X)σ−X) =

∨
σ∈Σ Gr((Ω : η, ψ)σ)

Construction of Lifted Explanation Graphs. Lifted explanation graphs for a query are
constructed by transforming the Param-Px program P into one that explicitly constructs
a lifted explanation graph, following a similar procedure to the one outlined in Section 2
for constructing ground explanation graphs. The main difference is the use of existential
quantification. Let A :− G be a program clause, and vars(G)−vars(A) be the set of variables
in G and not in A. If any of these variables has a type, then it means that the variable used
as an instance argument in G is existentially quantified. Such clauses are then translated
as head(A,Eh) :− exp(G,Eg), quantify(Eg, Vs, Eh), where Vs is the set of typed variables in
vars(G)− vars(A). A minor difference is the treatment of constraints: exp is extended to
atomic constraints ϕ such that exp(ϕ,E) binds E to (∅ : {ϕ}, 1).

We order the populations and map the elements of the populations to natural numbers
as follows. The population that comes first in the order is mapped to natural numbers in the
range 1..m, where m is the cardinality of this population. Any constants in this population
are mapped to natural numbers in the low end of the range. The next population in the order
is mapped to natural numbers starting from m+ 1 and so on. Thus, each typed variable is
assigned a domain of contiguous positive values. The rest of the program transformation
remains the same, the underlying graphs are constructed using the lifted operators. The
lifted explanation graph corresponding to the query in Fig 1(a) is shown in Fig 1(c).
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4 Lifted Inference using Lifted Explanations

In this section we describe a technique to compute answer probabilities in a lifted fashion
from closed lifted explanation graphs. This technique works on a restricted class of lifted
explanation graphs satisfying a property we call the frontier subsumption property.

I Definition 15 (Frontier). Given a closed lifted explanation graph (Ω : η, ψ), the frontier of
ψ w.r.t X ∈ Ω denoted frontierX(ψ) is the set of non-zero maximal subtrees of ψ, which do
not contain a node with X as the instance variable.

Analogous to the set representation of explanations described in Section 2.1, we consider
the set representations of lifted explanations, i.e., root-to-leaf paths in the DAGs of lifted
explanation graphs that end in a “1” leaf. We consider term substitutions that can be applied
to lifted explanations. These substitutions replace a variable by a term and further apply
standard re-writing rules such as simplification of algebraic expressions. As before, we allow
term mappings that specify a set of term substitutions.

I Definition 16 (Frontier subsumption property). A closed lifted explanation graph (Ω : η, ψ)
satisfies the frontier subsumption property w.r.t X ∈ Ω, if under term mappings σ1 =
{X±k+ 1/Y | 〈X±k < Y 〉 ∈ η} and σ2 = {X+ 1/X}, every tree φ ∈ frontierX(ψ) satisfies
the following condition: for every lifted explanation E2 in ψ, there is a lifted explanation E1
in φ such that E1σ1 is a sub-explanation (i.e., subset) of E2σ2.

A lifted explanation graph is said to satisfy frontier subsumption property, if it is satisfied
for each bound variable. This property can be checked in a bottom up fashion for all bound
variables in the graph. The tree obtained by replacing all subtrees in frontierX(ψ) by 1 in ψ
is denoted ψ̂X .

For closed lifted explanation graphs satisfying the above property, the probability of
query answers can be computed using the following set of recurrences. With each subtree
ψ = (s, t)[αi : ψi] of the DAG of the lifted explanation graph, we associate function f(σ, ψ)
where σ is a (possibly incomplete) mapping of variables in Ω to values in their domains.

I Definition 17 (Probability recurrences). Given a closed lifted explanation graph (Ω : η, ψ),
we define f(σ, ψ) (as well as g(σ, ψ) and h(σ, ψ) wherever applicable) for a partial mapping
σ of variables in Ω to values in their domains based on the structure of ψ. As before
ψ = (s, t)[αi : ψi]
Case 1: ψ is a 0 leaf node. Then f(σ, 0) = 0

Case 2: ψ is a 1 leaf node. Then f(σ, 1) =
{

1, if [[ησ]] 6= ∅
0, otherwise

Case 3: tσ is a constant. Then f(σ, ψ) =
{∑

αi∈Ds
πs(αi) · f(σ, ψi), if [[ησ]] 6= ∅

0, otherwise
Case 4: tσ ∈ Ω, and range(t, ησ) = (l, u). Then

f(σ, ψ) =
{
h(σ[l/t], ψ), if [[ησ]] 6= ∅
0, otherwise

h(σ[c/t], ψ) =
{
g(σ[c/t], ψ) + ((1− P (ψ̂t))× h(σ[c+ 1/t], ψ)), if c < u

g(σ[c/t], ψ), if c = u

g(σ, ψ) =
{∑

αi∈Ds
πs(αi) · f(σ, ψi), if [[ησ]] 6= ∅

0, otherwise

ICLP 2016 TCs



15:12 Inference in Probabilistic Logic Programs Using Lifted Explanations

In the above definition σ[c/t] refers to a new partial mapping obtained by augmenting σ
with the substitution [c/t], P (ψ̂t) is the sum of the probabilities of all branches leading to a
1 leaf in ψ̂t. The functions f , g and h defined above can be readily specialized for each ψ.
Moreover, the parameter σ can be replaced by the tuple of values actually used by a function.
These rewriting steps yield recurrences such as those shown in Fig. 2. Note that P (ψ̂t) can
be computed using recurrences as well (shown as f̂ in Fig. 2).

I Definition 18 (Probability of Lifted Explanation Graph). Let (Ω : η, ψ) be a closed lifted
explanation graph. Then, the probability of explanations represented by the graph, prob((Ω :
η, ψ)), is the value of f({}, ψ).

I Theorem 19 (Correctness of Lifted Inference). Let (Ω : η, ψ) be a closed lifted explanation
graph, and φ = Gr(Ω : η, ψ) be the corresponding ground explanation graph. Then prob((Ω :
η, ψ)) = prob(φ).

Given a closed lifted explanation graph, let k be the maximum number of instance
variables along any root to leaf path. Then the function f(σ, ψ) for the leaf will have to be
computed for each mapping of the k variables. Each recurrence equation itself is either of
constant size or bounded by the number of children of a node. Using dynamic programming
a solution to the recurrence equations can be computed in polynomial time.

I Theorem 20 (Efficiency of Lifted Inference). Let ψ be a closed lifted inference graph, n be
the size of the largest population, and k be the largest number of instance variables along any
root of leaf path in ψ. Then, f({}, ψ) can be computed in O(|ψ| × nk) time.

There are two sources of further optimization in the generation and evaluation of recur-
rences. First, certain recurrences may be transformed into closed form formulae which can be
more efficiently evaluated. For instance, the closed form formula for h(σ, ψ) for the subtree
rooted at the node (toss, Y ) in Fig 1(c) can be evaluated in O(log(n)) time while a naive
evaluation of the recurrence takes O(n) time. Second, certain functions f(σ, ψ) need not be
evaluated for every mapping σ because they may be independent of certain variables. For
example, leaves are always independent of the mapping σ.

Other Examples. There are a number of simple probabilistic models that cannot be tackled
by other lifted inference techniques but can be encoded in Param-Px and solved using our
technique. For one such example, consider an urn with n balls, where the color of each ball
is given by a distribution. Determining the probability that there are at least two green balls
is easy to phrase as a directed first-order graphical model. However, lifted inference over
such models can no longer be applied if we need to determine the probability of at least two
green or two red balls. The probability computation for one of these events can be viewed
as a generalization of noisy-OR probability computation, however dealing with the union
requires the handling of intersection of the two events, due to which the O(log(N)) time
computation is no longer feasible.

For a more complex example, consider a system of n agents where each agent moves
between various states in a stochastic manner. Consider a query to evaluate whether there
are at least k agents in a given state s at a given time t. While this model is similar to a
collective graphical model the aggregate query is different from those considered in [14], where
computing probability of observed aggregate counts, parametering learning of individual
model, and multiple path reconstruction are considered. Note that we cannot compile a
model of this system into a clausal form without knowing the query. This system can be
represented as a PRISM/Px program by modeling each agent’s evolution as an independent
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Hidden Markov Model (HMM). The lifted inference graph for querying the state of an
arbitrary agent at time t is of size O(e · t), where e is the size of the transition relation of the
HMM. For the “at least k agents” query, note that nodes in the lifted inference graph will be
grouped by instances first, and hence the size of the graph (and the number of terms in the
recurrences) is O(k · e · t). The time complexity of evaluating the recurrences is O(n · k · e · t)
where n is the total number of agents.

5 Related Work and Discussion

First-order graphical models [10, 2] are compact representations of propositional graphical
models over populations. The key concepts in this field are that of parameterized random
variables and parfactors. A parameterized random variable stands for a population of
i.i.d. propositional random variables (obtained by grounding the logical variables). Parfactors
are factors (potential functions) on parameterized random variables. By allowing large
number of identical factors to be specified in a first-order fashion, first-order graphical models
provide a representation that is independent of the population size. A key problem, then, is
to perform lifted probabilistic inference over these models, i.e. without grounding the factors
unnecessarily. The earliest such technique was inversion elimination presented in [10]. When
summing out a parameterized random variable (i.e., all its groundings), it is observed that if
all the logical variables in a parfactor are contained in the parameterized random variable, it
can be summed out without grounding the parfactor.

The idea of inversion elimination, though powerful, exploits one of the many forms of
symmetry present in first-order graphical models. Another kind of symmetry present in
such models is that the values of an intermediate factor may depend on the histogram of
propositional random variable outcomes, rather than their exact assignment. This symmetry
is exploited by counting elimination [2] and elimination by counting formulas [7].

In [17] a form of lifted inference that uses constrained CNF theories with positive and
negative weight functions over predicates as input was presented. Here the task of probabilistic
inference in transformed to one of weighted model counting. To do the latter, the CNF
theory is compiled into a structure known as first-order deterministic decomposable negation
normal form. The compiled representation allows lifted inference by avoiding grounding of
the input theory. This technique is applicable so long as the model can be formulated as a
constrained CNF theory.

Another approach to lifted inference for probabilistic logic programs was presented in [1].
The idea is to convert a ProbLog program to parfactor representation and use a modified
version of generalized counting first order variable elimination algorithm [16] to perform
lifted inference. Problems where the model size is dependent on the query, such as models
with temporal aspects, are difficult to solve with the knowledge compilation approach.

In this paper, we presented a technique for lifted inference in probabilistic logic programs
using lifted explanation graphs. This technique is a natural generalization of inference
techniques based on ground explanation graphs, and follows the two step approach: generation
of an explanation graph, and a subsequent traversal to compute probabilities. A more
complete description of this technique is in [9]. While the size of the lifted explanation
graph is often independent of population, computation of probabilities may take time that
is polynomial in the size of the population. A more sophisticated approach to computing
probabilities from lifted explanation graph, by generating closed form formulae where possible,
will enable efficient inference. Another direction of research would be to generate hints for
lifted inference based on program constructs such as aggregation operators. Finally, our
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future work is focused on performing lifted inference over probabilistic logic programs that
represent undirected and discriminative models.

Acknowledgments. We thank Andrey Gorlin for discussions and review of this work.
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