6 research outputs found

    Quantifying Information Leakage of Randomized Protocols

    Get PDF
    International audienceThe quantification of information leakage provides a quantitative evaluation of the security of a system. We propose the usage of Markovian processes to model and analyze the information leakage of deterministic and probabilistic systems. We show that this method generalizes the lattice of information approach and is a natural framework for modeling refined attackers capable to observe the internal behavior of the system. We also use our method to obtain an algorithm for the computation of channel capacity from our Markovian models. Finally, we show how to use the method to analyze timed and non-timed attacks on the Onion Routing protocol

    Quantitative information flow under generic leakage functions and adaptive adversaries

    Full text link
    We put forward a model of action-based randomization mechanisms to analyse quantitative information flow (QIF) under generic leakage functions, and under possibly adaptive adversaries. This model subsumes many of the QIF models proposed so far. Our main contributions include the following: (1) we identify mild general conditions on the leakage function under which it is possible to derive general and significant results on adaptive QIF; (2) we contrast the efficiency of adaptive and non-adaptive strategies, showing that the latter are as efficient as the former in terms of length up to an expansion factor bounded by the number of available actions; (3) we show that the maximum information leakage over strategies, given a finite time horizon, can be expressed in terms of a Bellman equation. This can be used to compute an optimal finite strategy recursively, by resorting to standard methods like backward induction.Comment: Revised and extended version of conference paper with the same title appeared in Proc. of FORTE 2014, LNC

    Markovian Processes for Quantitative Information Leakage

    Get PDF

    Markovian Processes for Quantitative Information Leakage

    Get PDF
    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output.Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially in the size of the secret and observables, are cumbersome to compute and store, encode both the behavior of the system and assumptions about the attacker, and assume an input-output behavior of the system. For these reasons we propose to model the system-attacker scenario with Markovian models.We show that such models are more compact and treatable than channel matrices. Also, they clearly separate the behavior of the system from the assumptions about the attacker, and can represent even non-terminating behavior in a finite model. We provide techniques and algorithms to model and analyze both deterministic and randomized processes with Markovian models and to compute their informationleakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some interesting cases of secret-dependent protocols

    Markovian Processes for Quantitative Information Leakage

    Get PDF
    Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output.Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially in the size of the secret and observables, are cumbersome to compute and store, encode both the behavior of the system and assumptions about the attacker, and assume an input-output behavior of the system. For these reasons we propose to model the system-attacker scenario with Markovian models.We show that such models are more compact and treatable than channel matrices. Also, they clearly separate the behavior of the system from the assumptions about the attacker, and can represent even non-terminating behavior in a finite model. We provide techniques and algorithms to model and analyze both deterministic and randomized processes with Markovian models and to compute their informationleakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some interesting cases of secret-dependent protocols
    corecore