3,297 research outputs found

    Aggregation-based Multilevel Methods for Lattice QCD

    Full text link
    In Lattice QCD computations a substantial amount of work is spent in solving the Dirac equation. In the recent past it has been observed that conventional Krylov solvers tend to critically slow down for large lattices and small quark masses. We present a Schwarz alternating procedure (SAP) multilevel method as a solver for the Clover improved Wilson discretization of the Dirac equation. This approach combines two components (SAP and algebraic multigrid) that have separately been used in lattice QCD before. In combination with a bootstrap setup procedure we show that considerable speed-up over conventional Krylov subspace methods for realistic configurations can be achieved.Comment: Talk presented at the XXIX International Symposium on Lattice Field Theory, July 10-16, 2011, Lake Tahoe, Californi

    Adaptive Aggregation Based Domain Decomposition Multigrid for the Lattice Wilson Dirac Operator

    Get PDF
    In lattice QCD computations a substantial amount of work is spent in solving discretized versions of the Dirac equation. Conventional Krylov solvers show critical slowing down for large system sizes and physically interesting parameter regions. We present a domain decomposition adaptive algebraic multigrid method used as a precondtioner to solve the "clover improved" Wilson discretization of the Dirac equation. This approach combines and improves two approaches, namely domain decomposition and adaptive algebraic multigrid, that have been used seperately in lattice QCD before. We show in extensive numerical test conducted with a parallel production code implementation that considerable speed-up over conventional Krylov subspace methods, domain decomposition methods and other hierarchical approaches for realistic system sizes can be achieved.Comment: Additional comparison to method of arXiv:1011.2775 and to mixed-precision odd-even preconditioned BiCGStab. Results of numerical experiments changed slightly due to more systematic use of odd-even preconditionin

    A course space construction based on local Dirichlet-to-Neumann maps

    Get PDF
    Coarse-grid correction is a key ingredient of scalable domain decomposition methods. In this work we construct coarse-grid space using the low-frequency modes of the subdomain Dirichlet-to-Neumann maps and apply the obtained two-level preconditioners to the extended or the original linear system arising from an overlapping domain decomposition. Our method is suitable for parallel implementation, and its efficiency is demonstrated by numerical examples on problems with large heterogeneities for both manual and automatic partitionings

    Nonlinear Preconditioning: How to use a Nonlinear Schwarz Method to Precondition Newton's Method

    Get PDF
    For linear problems, domain decomposition methods can be used directly as iterative solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost always used, since the Krylov method finds a much better residual polynomial than the stationary iteration, and thus converges much faster. We show in this paper that also for non-linear problems, domain decomposition methods can either be used directly as iterative solvers, or one can use them as preconditioners for Newton's method. For the concrete case of the parallel Schwarz method, we show that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all components directly defined by the iterative method. This has the advantage that RASPEN already converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially better preconditioner for Newton's method. The iterative construction also allows us to naturally define a coarse correction using the multigrid full approximation scheme, which leads to a convergent two level non-linear iterative domain decomposition method and a two level RASPEN non-linear preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a non-linear diffusion problem

    Space-time domain decomposition for advection-diffusion problems in mixed formulations

    Get PDF
    This paper is concerned with the numerical solution of porous-media flow and transport problems , i. e. heterogeneous, advection-diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov--Poincar{\'e} operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann-Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation Δu(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter εR\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if εk2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter hk3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with hk1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given
    corecore