120,130 research outputs found

    Class-Level Refactoring Prediction by Ensemble Learning with Various Feature Selection Techniques

    Get PDF
    Background: Refactoring is changing a software system without affecting the software functionality. The current researchers aim i to identify the appropriate method(s) or class(s) that needs to be refactored in object-oriented software. Ensemble learning helps to reduce prediction errors by amalgamating different classifiers and their respective performances over the original feature data. Other motives are added in this paper regarding several ensemble learners, errors, sampling techniques, and feature selection techniques for refactoring prediction at the class level. Objective: This work aims to develop an ensemble-based refactoring prediction model with structural identification of source code metrics using different feature selection techniques and data sampling techniques to distribute the data uniformly. Our model finds the best classifier after achieving fewer errors during refactoring prediction at the class level. Methodology: At first, our proposed model extracts a total of 125 software metrics computed from object-oriented software systems processed for a robust multi-phased feature selection method encompassing Wilcoxon significant text, Pearson correlation test, and principal component analysis (PCA). The proposed multi-phased feature selection method retains the optimal features characterizing inheritance, size, coupling, cohesion, and complexity. After obtaining the optimal set of software metrics, a novel heterogeneous ensemble classifier is developed using techniques such as ANN-Gradient Descent, ANN-Levenberg Marquardt, ANN-GDX, ANN-Radial Basis Function; support vector machine with different kernel functions such as LSSVM-Linear, LSSVM-Polynomial, LSSVM-RBF, Decision Tree algorithm, Logistic Regression algorithm and extreme learning machine (ELM) model are used as the base classifier. In our paper, we have calculated four different errors i.e., Mean Absolute Error (MAE), Mean magnitude of Relative Error (MORE), Root Mean Square Error (RMSE), and Standard Error of Mean (SEM). Result: In our proposed model, the maximum voting ensemble (MVE) achieves better accuracy, recall, precision, and F-measure values (99.76, 99.93, 98.96, 98.44) as compared to the base trained ensemble (BTE) and it experiences less errors (MAE = 0.0057, MORE = 0.0701, RMSE = 0.0068, and SEM = 0.0107) during its implementation to develop the refactoring model. Conclusions: Our experimental result recommends that MVE with upsampling can be implemented to improve the performance of the refactoring prediction model at the class level. Furthermore, the performance of our model with different data sampling techniques and feature selection techniques has been shown in the form boxplot diagram of accuracy, F-measure, precision, recall, and area under the curve (AUC) parameters.publishedVersio

    An Extended Stable Marriage Problem Algorithm for Clone Detection

    Full text link
    Code cloning negatively affects industrial software and threatens intellectual property. This paper presents a novel approach to detecting cloned software by using a bijective matching technique. The proposed approach focuses on increasing the range of similarity measures and thus enhancing the precision of the detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating how matches between code fragments of different files can be expressed. A prototype of the proposed approach is provided using a proper scenario, which shows a noticeable improvement in several features of clone detection such as scalability and accuracy.Comment: 20 pages, 10 figures, 6 table

    A Lightweight and Flexible Mobile Agent Platform Tailored to Management Applications

    Full text link
    Mobile Agents (MAs) represent a distributed computing technology that promises to address the scalability problems of centralized network management. A critical issue that will affect the wider adoption of MA paradigm in management applications is the development of MA Platforms (MAPs) expressly oriented to distributed management. However, most of available platforms impose considerable burden on network and system resources and also lack of essential functionality. In this paper, we discuss the design considerations and implementation details of a complete MAP research prototype that sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and tailored for network and systems management applications.Comment: 7 pages, 5 figures; Proceedings of the 2006 Conference on Mobile Computing and Wireless Communications (MCWC'2006

    Monitoring-Oriented Programming: A Tool-Supported Methodology for Higher Quality Object-Oriented Software

    Get PDF
    This paper presents a tool-supported methodological paradigm for object-oriented software development, called monitoring-oriented programming and abbreviated MOP, in which runtime monitoring is a basic software design principle. The general idea underlying MOP is that software developers insert specifications in their code via annotations. Actual monitoring code is automatically synthesized from these annotations before compilation and integrated at appropriate places in the program, according to user-defined configuration attributes. This way, the specification is checked at runtime against the implementation. Moreover, violations and/or validations of specifications can trigger user-defined code at any points in the program, in particular recovery code, outputting or sending messages, or raising exceptions. The MOP paradigm does not promote or enforce any specific formalism to specify requirements: it allows the users to plug-in their favorite or domain-specific specification formalisms via logic plug-in modules. There are two major technical challenges that MOP supporting tools unavoidably face: monitor synthesis and monitor integration. The former is heavily dependent on the specification formalism and comes as part of the corresponding logic plug-in, while the latter is uniform for all specification formalisms and depends only on the target programming language. An experimental prototype tool, called Java-MOP, is also discussed, which currently supports most but not all of the desired MOP features. MOP aims at reducing the gap between formal specification and implementation, by integrating the two and allowing them together to form a system

    Using a Combination of Measurement Tools to Extract Metrics from Open Source Projects

    Get PDF
    Software measurement can play a major role in ensuring the quality and reliability of software products. The measurement activities require appropriate tools to collect relevant metric data. Currently, there are several such tools available for software measurement. The main objective of this paper is to provide some guidelines in using a combination of multiple measurement tools especially for products built using object-oriented techniques and languages. In this paper, we highlight three tools for collecting metric data, in our case from several Java-based open source projects. Our research is currently based on the work of Card and Glass, who argue that design complexity measures (data complexity and structural complexity) are indicators/predictors of procedural/cyclomatic complexity (decision counts) and errors (discovered from system tests). Their work was centered on structured design and our work is with object-oriented designs and the metrics we use parallel those of Card and Glass, being, Henry and Kafura's Information Flow Metrics, McCabe's Cyclomatic Complexity, and Chidamber and Kemerer Object-oriented Metrics

    An Empirical Study of a Repeatable Method for Reengineering Procedural Software Systems to Object- Oriented Systems

    Get PDF
    This paper describes a repeatable method for reengineering a procedural system to an object-oriented system. The method uses coupling metrics to assist a domain expert in identifying candidate objects. An application of the method to a simple program is given, and the effectiveness of the various coupling metrics are discussed. We perform a detailed comparison of our repeatable method with an ad hoc, manual reengineering effort based on the same procedural program. The repeatable method was found to be effective for identifying objects. It produced code that was much smaller, more efficient, and passed more regression tests than the ad hoc method. Analysis of object-oriented metrics indicated both simpler code and less variability among classes for the repeatable method

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types
    • 

    corecore