
Citation: Panigrahi, R.; Kuanar, S.K.;

Misra, S.; Kumar, L. Class-Level

Refactoring Prediction by Ensemble

Learning with Various Feature

Selection Techniques. Appl. Sci. 2022,

12, 12217. https://doi.org/10.3390/

app122312217

Academic Editor: Antonio

Sarasa Cabezuelo

Received: 5 September 2022

Accepted: 21 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Class-Level Refactoring Prediction by Ensemble Learning with
Various Feature Selection Techniques
Rasmita Panigrahi 1 , Sanjay Kumar Kuanar 1 , Sanjay Misra 2,* and Lov Kumar 3

1 Department of Computer Science and Engineering, GIET University, Gunupur 765022, Odisha, India
2 Department of Computer Science and Communication, Østfold University College, 1757 Halden, Norway
3 Department of Computer Science and Information System, BITS-Pilani-Hyderabad Campus,

Secunderabad 500078, Telangana, India
* Correspondence: sanjay.misra@hiof.no

Abstract: Background: Refactoring is changing a software system without affecting the software
functionality. The current researchers aim i to identify the appropriate method(s) or class(s) that
needs to be refactored in object-oriented software. Ensemble learning helps to reduce prediction
errors by amalgamating different classifiers and their respective performances over the original
feature data. Other motives are added in this paper regarding several ensemble learners, errors,
sampling techniques, and feature selection techniques for refactoring prediction at the class level.
Objective: This work aims to develop an ensemble-based refactoring prediction model with structural
identification of source code metrics using different feature selection techniques and data sampling
techniques to distribute the data uniformly. Our model finds the best classifier after achieving
fewer errors during refactoring prediction at the class level. Methodology: At first, our proposed
model extracts a total of 125 software metrics computed from object-oriented software systems
processed for a robust multi-phased feature selection method encompassing Wilcoxon significant text,
Pearson correlation test, and principal component analysis (PCA). The proposed multi-phased feature
selection method retains the optimal features characterizing inheritance, size, coupling, cohesion,
and complexity. After obtaining the optimal set of software metrics, a novel heterogeneous ensemble
classifier is developed using techniques such as ANN-Gradient Descent, ANN-Levenberg Marquardt,
ANN-GDX, ANN-Radial Basis Function; support vector machine with different kernel functions such
as LSSVM-Linear, LSSVM-Polynomial, LSSVM-RBF, Decision Tree algorithm, Logistic Regression
algorithm and extreme learning machine (ELM) model are used as the base classifier. In our paper, we
have calculated four different errors i.e., Mean Absolute Error (MAE), Mean magnitude of Relative
Error (MORE), Root Mean Square Error (RMSE), and Standard Error of Mean (SEM). Result: In our
proposed model, the maximum voting ensemble (MVE) achieves better accuracy, recall, precision,
and F-measure values (99.76, 99.93, 98.96, 98.44) as compared to the base trained ensemble (BTE)
and it experiences less errors (MAE = 0.0057, MORE = 0.0701, RMSE = 0.0068, and SEM = 0.0107)
during its implementation to develop the refactoring model. Conclusions: Our experimental result
recommends that MVE with upsampling can be implemented to improve the performance of the
refactoring prediction model at the class level. Furthermore, the performance of our model with
different data sampling techniques and feature selection techniques has been shown in the form
boxplot diagram of accuracy, F-measure, precision, recall, and area under the curve (AUC) parameters.

Keywords: Software Refactoring prediction; software metrics; ensemble classifier; multi-phased
feature extraction

1. Introduction

The last few years show the emergence of software as a vital technology to meet
customer decision-making requirements for defense, business, industrial computing, com-
munication, healthcare, security, and real-time control. Life in the twenty-first century

Appl. Sci. 2022, 12, 12217. https://doi.org/10.3390/app122312217 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312217
https://doi.org/10.3390/app122312217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3980-7306
https://orcid.org/0000-0001-8229-2956
https://doi.org/10.3390/app122312217
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312217?type=check_update&version=2

Appl. Sci. 2022, 12, 12217 2 of 29

is inconceivable without a software computing environment. As a crucial component of
contemporary human existence, software must be dependable, affordable, and adequate
to meet essential requirements. On the one hand, the software industry strives to invent
improved software solutions and hardware ecosystems to increase productivity while
minimizing development costs. On the other hand, maintaining a better balance between
development cost, productivity, and dependability has long been a challenge for the in-
dustry. Various paradigms, such as agile development, modular development, and Free
and Open Source Software (FOSS) components, etc., have been extensively examined. Yet,
the final software’s reliability under real-world computing remains challenging [1]. For
instance, FOSS and open-source software are frequently utilized to cut costs; nevertheless,
the excessive usage of such components invites fault likelihood [1,2] after a period, which
eventually renders software unreliable and insecure. Such incorrect software design meth-
ods necessitate testing or verification to verify that the created code remains intact and
error-free for an extended period without malfunctions [2]. Developers perform manual
testing over the software development life cycle (SDLC) to achieve it. Such paradigms
help design object-oriented software with better maintainability, abstraction, flexibility,
reusability, and fault resiliency. However, the large code size and complexity limit conven-
tional manual testing or regression methods and demand automatic design optimization
or recommendation models to support quality software development (QSD). Typically,
in SDLC, change signifies the rule rather than the exception. Therefore, a key point for
sustainable program development is to tackle software complexity, ambiguity, fault-prone
less, etc., ensuring that the program retains a high quality and reliability, thus easing
maintenance activities.

The literature demonstrates a correlation between bad code quality and poor produc-
tivity and susceptibility over an operating time [1,2]. Despite the importance of ensuring
software quality, integrated development environments (IDEs) provide developers with
little assistance in dealing with code constructions. Various tools for detecting design
faults and identifying vulnerable components have been developed to improve quality-
centric verification. The necessity for a robust tool or approach to evaluate the quality of
the code cannot be overlooked in the real world, although in the majority of existing re-
search, academia and industry may focus solely on bug estimation or reusability prediction.
There will always be a need for a process that might evaluate a piece of code or software
system’s reliability, maintainability, fault tolerance, and readability. Recently, academics
have proposed the “Refactoring” paradigm as an optimistic approach to achieving these
objectives [3]. Altering a software code or making changes in the software code, known as
refactoring, will not significantly change the external functionality while ensuring quality
provision to the targeted software systems. Functionally, software or code-refactoring mech-
anisms state the process of restructuring the existing program by changing the factoring
without imposing any external behavior or intention. It is primarily achieved to enhance the
software system’s non-functional component, making the software more readable, abstrac-
tive, robust, and maintainable, even at the cost of minimized complexity. Predominantly,
refactoring is the sequential micro-refactoring paradigm in which micro changes are made
in the software program or code to preserve the prime or expected behavior [3,4]. Though,
it ensures the least or no change in intended external behavior. Identifying bugs, improper
design, and vulnerability can be solved by refactoring to strengthen the quality of the
software product through extended Complexity-free development and logic programming.

Moreover, it cleans up the code and eliminates defect or bug probabilities [2,3].
Peruma et al. [4] conducted quantitative and qualitative experiments on Stack Overflow
refactoring discussions. Their findings reveal that a diverse group of developers use Stack
Overflow for refactoring assistance across a wide range of technologies. Their observations
show developers often need help refactoring in five areas: code optimization, tools and
IDEs, architecture and design patterns, unit testing, and database. Our findings will help
bridge the gap between traditional (or academic) features of refactoring and their real-world
relevance, including improved tool support. Software often undergoes continuous changes

Appl. Sci. 2022, 12, 12217 3 of 29

within timing constraints, leading developers to leave aside better programming practices
to quickly convey the most suitable product [5–7]. However, it results in technical debt,
drastically incorporating design problems impacting system maintenance and evolution.

There are different customized efforts made to enhance the quality of software, such
as code-smell detection [8–10] towards program comprehension and change- and bug-
proneness estimation over source code elements [11]. The analysis has played a vital
role in different characteristics such as smells, bugs, etc. [6–10]. Various authors have
made multiple efforts to solve refactoring problems; identifying an optimal signifier has
become challenging. Kumar et al. [11] have found that software metrics are the most
important in assisting the class-level refactoring proneness estimation among the major
possible solutions. On the other hand, machine learning methods can learn over different
structural constructs to decide to refactor a software chunk or class [12]. Some authors
recommend using supervised concepts by exploiting predictors as independent variables
and their relationship with the dependent variable (i.e., presence of a malicious entity,
smell, or degree of smelliness in a source code) to assess the refactoring proneness of a
software component. The role of code metrics is very importtant for refactoring prediction.
Dallal et al. [13] applied size, cohesion, and coupling metrics for class-level refactoring
analysis Software code metrics, such as object-oriented metrics, Halstead metrics, etc., are
available to identify the refactoring proneness of a code component [14,15]. Exploiting
software code metrics and their structural entity information can significantly predict a
software solution’s refactoring probability [14].

Motivation

The goal of refactoring is to improve the quality of existing code without changing
its functionality. Refactoring applications lead to a waste of time and effort if the code is
already generated. So, we aim to apply the refactoring on the code before going to the
desk of developers. The selection of classes and methods needs refactoring before the
development of the code becomes a difficult task for the researchers. In this work, we
implement the refactoring concept after the design stage of the software during its life cycle.
So, we generate the metrics values of each class after generating their corresponding class
diagram by using a machine learning framework. Several works have been carried out for
refactoring prediction at the class level and method level for identifying the refactoring
candidates through a machine learning framework. However, refactoring prediction
through heterogeneous ensemble classifiers at the class level with source code metrics
as inputs into the machine learning framework is so far uncultivated.

The rest of the study paper is organized as follows. Section 2 presents the literature
survey, Section 3 presents the research methodology, and the results are discussed in
Section 4. Section 5 focuses on comparative analysis, whereas Section 6 focuses on the
conclusion and any inferences. The references utilized in this study are listed at the end of
the article.

2. Literature Survey

This section highlights some of the most important current literature on refactoring
in software systems. Bashir et al. [16] focused on designing a refactoring assessment
method to help developers making strengthen software with reliability, maintainability,
understandability, modifiability, and analyzability. The paper [17] on stability-oriented
refactoring estimation used four attributes: abstraction, cohesion, coupling, and inheritance.
They applied a hybrid Gravitational Search Algorithm and Artificial Bee Colony algorithm
(GSA-ABC) to assess refactoring likelihood. Vimaladevi [17] used the stability of the code
as the fitness function. Krishna et al. [18] evaluated whether refactoring could impact
the quality of the code. The authors used object-oriented software metrics that classified
software as to whether it needed refactoring. To assess the relationship between code
refactoring and software maintainability, Kaur et al. [19] applied Junit and RefFinder. The
authors recommended different software (code) metrics to examine maintainability and

Appl. Sci. 2022, 12, 12217 4 of 29

concluded that code refactoring could help to archive low-maintenance software design.
Malhotra et al. [20] used a design metrics suite to quantify internal quality attributes in order
to determine the impact of refactoring maintainability. Some of the external quality aspects
were the level of abstraction, understandability, modifiability, extensibility, and reusability.
The authors used expert opinion to assess the impact of refactoring on maintainability.
Desai et al. [21] focused on using the refactoring cost estimation (RCE) concept by applying
different identifies such as misuse of classes, violation of the encapsulation principle, lack of
inheritance concept, misuse of inheritance, misplaced polymorphism to assess refactoring
proneness of a software. Lacerda et al. [22] observed the challenges and effectiveness of
code smells and refactoring. Satwinder et al. [23] have carried out a literature survey on
disclosing code smells. However, its efficiency in automatic refactoring assessment needs to
be improved to ensure software reliability over an operating period [24]. Santos et al. [25]
suggested refactoring significantly towards quality software design and cost-optimization;
however, they found significant classical methods computationally overburdened, complex,
and cost-consuming. Han et al. [26] proposed a software metrics model to assess the effect
of refactoring candidates on their maintainability. Khlif et al. [27] stated that the major
refactoring methods address merely the software’s structural aspects.

On the contrary, the combined semantic aspects with the structural aspects can reduce
the business process model’s control-flow complexity in the Business Process Modeling
Notation. The authors designed a refactoring method using the graph optimization concept
with this motive. Arcelli et al. [28] proposed a performance-driven software architecture
refactoring concept. Tao et al. [29] developed an automated refactoring idea for Java con-
current programs by synchronizing requirement analysis. The authors used split lock, split
critical section, and convert features to perform the refactoring. Singh et al. [30] developed
a refactoring-based pattern modeling concept to refine software design. The Rodin tool was
applied to check the internal consistency concerning the desired functional behavior. Tar-
wani et al. [31] evaluated the refactoring sequence with a greedy algorithm, which selected
the optimal solution at each stage to retrieve optimal global solutions and obtain varied
sequences. These sequences were subsequently used in the source code to calculate the
sum of software maintainability. The authors focused on identifying refactoring probability
and the best refactoring solution to enhance maintainability [32,33]. Wang et al. [33] pro-
posed a system-level refactoring concept that automatically identified a class’s refactoring
probability. The authors stated that “high cohesion and low coupling” features can be
applied to assess code refactoring likelihood. They also found that identifying the “bad
smells” caused due to coupling and cohesion can be separated without changing the code
behavior. Alves et al. [34] proposed RefDistiller is a static analysis approach designed to aid
with manual refactoring examination. RefDistiller combined two methods: a predefined
template to identify potentially missing edits while manually refactoring.

In contrast, the second approach executes an automatic refactoring [35] engine to
detect potentially improper extra edits. Using advanced graph analysis techniques, this
study tries to automatically identify and restructure long method smells in Java code,
overcoming the aforementioned challenges. A metamodel refactoring is an invertible
semantics-preserving co-transformation that alters a metamodel as well as its models with-
out losing data. Alton et al. [36] proposed a meta-modeling approach for pattern-based
refactoring using design pattern and transformation rule specification to make the software
more modular, modifiable, and reusable. This work [36] addresses a subproblem of meta-
model refactoring: how to use the Coq Proof Assistant to show the validity of the refactoring
of class diagrams without OCL constraints. Leandro et al. [37] considered identifying bad
smells as a feature to perform a refactoring assessment, where the distance between system
entities (attributes/methods) and class extracts with certain pre-conditioning was used to
perform behavior-preserving refactoring analysis. The Leandro evaluates their proposed
technique by automating 9885 transformations on four real open-source projects utilizing
eight Eclipse IDE refactorings. In 20.41% and 14.11% of the investigated transformations,
respectively, RefactoringMiner and RefDiff discover more refactorings. RefactoringMiner

Appl. Sci. 2022, 12, 12217 5 of 29

and RefDiff do not identify the refactoring or classify it as another sort of refactoring in
the remaining circumstances. They reported 34 issues to refactor detection tools, and
engineers repaired 16 bugs, with three faults being replicated. Marcos et al. [38] proposed
a semi-automatic tool for restructuring use cases called REUSE that discovered existing
quality issues in use cases and suggested a prioritized set of candidate refactoring for
functional analysts. Dig et al. [39] found that refactoring for asynchronous execution on
mobile devices can improve responsiveness. However, the authors could not contribute to
a robust solution to achieve the same. Lu et al. [40] discussed the four refactoring operators
that retain the meaning of the code (i.e., Context Shift, Swap, Break and Merge). Aside from
these, they have proposed three more OCL consistency metrics (Complexity, Cohesion,
and Coupling) to measure sustainability and understandability. Lu et al. have created an
automated search-based OCL constraint refactoring method (SBORA). Stolee et al. [41]
found code smells that pointed to problems with web mashups that were written in the
popular Yahoo! Pipes environment. Applying code-smell features, the authors proposed
refactoring to lower the mashup programs’ complexity and increase the corresponding ab-
straction. Like wise software metrics is important for code smell detection it can be used for
refactoring prediction. Kumar et al. [42] empirically investigated the relationship between
existing class level object-oriented metrics and a quality parameter, namely maintainability

Alomar et al. [43] suggested that code-complexity metrics design an intelligent class-
level refactoring prediction model. This paper evaluates the ability to refactor documenta-
tion written in commit messages to predict the refactoring types performed at the commit
level adequately. Shahidi et al. [35] used Weighted Naive Bayes with InfoGain heuristic to
learn and predict refactoring probability in a real-world software system. Dallal et al. [44]
designed a predictive approach to predict refactoring. The authors used the predictive
model to analyze seven object-oriented metrics to perform refactoring classification to
achieve it empirically. Similarly, Bavota et al. [2] examined the relationship between code
smell and refactoring and found that a significantly large fraction of code having smell(s)
required refactoring. As a contribution, the authors [2] stated that identifying smells can
help assess a class’s refactoring likelihood.

Similarly, Oscar et al. [45] designed refactoring impact prediction (RIPE) to predict
the effect of refactoring on software quality. RPIE used 11 object-oriented metrics and 12
refactoring operations to perform refactoring recommendations.. Lvers et al. [46] proposed
a search based refactoring approach based on source code metrics. Nyamawe et al. [47]
proposed a machine-learning approach that was trained using the history of previously ap-
plied refactorings detected using both traditional refactoring detectors and commit message
analysis. The method employs a binary classifier to predict the need for refactoring and a
multi-label classifier to recommend necessary refactorings.. The authors applied univariate
and multivariate logistic regression algorithms as a predictive model. Liu et al. [24] rec-
ommended that exploiting conceptual relationships, implementation similarity, structural
relatedness, and inheritance hierarchies can help predict the software’s refactoring. Differ-
ent researchers have been experimenting with various AI-based techniques to recommend
refactoring. Indeed, researchers have been experimenting with various AI-based techniques
to recommend refactoring, such as pattern mining and search-based, etc. Aniche et al. [48]
proposed a machine-learning approach that was trained using the history of previously ap-
plied refactorings detected using both traditional refactoring detectors and commit message
analysis. The method employs a binary classifier to predict the need for refactoring and a
multi-label classifier to recommend necessary refactorings. Kumar et al. [49] worked on the
prediction of refactoring at the class level by a machine learning algorithm (LSSVM) with
three different kernels and PCA as a feature selection technique. The data imbalance issue
has been solved by the authors implementing the SMOTE technique. Authors have found
that LSSVM with radial basis function (RBF) performs better than the other state-of-art
method. Refactoring can also be predicted at the method level. Kumar et al. [50] applied 25
software metrics for refactoring prediction at the method level. Different algorithms such
as Naïve Bayes, ANN with Gradient descent, Levenberg Marquardt logistic regression,

Appl. Sci. 2022, 12, 12217 6 of 29

LogitBoost, etc., was used as a classifier.. In the paper [42], a subset of object-oriented
software metrics was considered to provide the necessary input data for the models for
predicting maintainability using the Neuro-Genetic algorithm (a hybrid approach of neural
network and genetic algorithm). This technique is used to estimate the maintainability of
two different case studies, Quality Evaluation System (QUES) and User Interface System
(UIS) (UIMS). This technique’s performance parameters are measured using the Mean
Absolute Error (MAE), Mean Absolute Relative Error (MARE), Root Mean Square Error
(RMSE), and Standard Error of the Mean) (SEM). According to the findings, the identified
subset metrics demonstrated improved predictability with higher accuracy for defect pre-
diction. The above literature notes that errors significantly impact on prediction capability
of refactoring model. We have considered the errors i.e., Mean Absolute Error (MAE), Mean
Absolute Relative Error (MARE), Root Mean Square Error (RMSE), and Standard Error of
the Mean) (SEM) for refactoring prediction by ensemble classifiers.

Research Contribution

The presented work in this paper presents various novel contributions. The work
carried out in this paper is an extension of our previous work [51] In our earlier work,
we developed a refactoring recommendation system for predicting the refactoring codes
in terms of methods by using homogeneous classifiers, three data sampling techniques
(SMOTE, SVSMOTE, and BLSMOTE) to solve the problem of data unbalancing, and the
Wilcoxon rank sum test as a feature selection technique. In this paper, various efforts are
performed by focusing on the appropriate classification and software metrics environments
for refactoring prediction at the class level. Real-time software solutions can benefit from a
revolutionary refactoring prediction model. Different value additions are incorporated to
augment the proposed supervised machine learning-based refactoring assessment model’s
computational efficiency, such as pre-processing, Min-Max normalization, data sampling,
feature extraction, and heterogeneous ensemble-assisted classification. As a solution, this
research creates a new refactoring prediction model for real-time software solutions. Using
code metrics of the software (program), we obtained a set of 125 code metrics, which
were used for phase-wise feature selection using Wilcoxon significant text, Pearson cor-
relation test, and PCA (principal component analysis) giving rise to an optimal set of
metrics with different structural features signifying the software quality. It reduces the
number of features based on respective significance. Differing from existing research, it
minimizes computational efficiency to make the proposed system more agile and robust.
The authors have applied the single machine learning algorithm to perform supervised
classification for refactoring analysis. Realizing the performance diversity and disparity
in prediction accuracy amongst the different classifiers is essential. This paper proposes
a heterogeneous ensemble with high robustness structure to perform class-level refactor-
ing prediction. We have also calculated the error percentages that occurred during the
implementation of different ensemble classifiers to choose the best one for the class-level
refactoring prediction model.

As a heterogeneous ensemble classifier, we have applied Artificial Neural Networks
(ANN) with different learning methods, such as ANN-Gradient Descent, ANN-Levenberg
Marquardt, ANN-GDX (adaptive weight learning), ANN-Radial Basis Function (RBF),
support vector machine (SVM) with different kernel functions such as SVM-Linear, SVM-
Polynomial, SVM-RBF, Decision Tree algorithm, Logistic Regression algorithm, extreme
learning machine (ELM) model as the base classifier and LSSVM with different kernels
such as linear, polynomial and RBF. Noticeably, our proposed heterogeneous ensemble
structure’s prime objective was to exploit each classifier’s efficiency or vote towards class-
level prediction and perform eventual classification as per MVE and BTE. The proposed
refactoring analysis or prediction model was applied over PROMISE benchmark data,
exploiting different key structural constructs. Our proposed model performed class-level
analysis and (refactoring) identification. The overall proposed model was developed using
R, MATLAB 2019b software tool, while performance analysis was performed in terms of

Appl. Sci. 2022, 12, 12217 7 of 29

classification precision, accuracy, recall, and F-Measure. Results state that an MVE ensemble
setup can produce the best feasible predictions for large-scale object-oriented software
using an MVE ensemble. Additionally, this research found that the key structural metrics
regarding coupling, cohesion, and complexity can be utilized as an identifier to classify
each class for its refactoring proneness. It can be significant for developers or professionals
to design cost-efficient and reliable software solutions. We have summarized our work in
the following points:

(i) Several researchers have used the SMOTE data sampling techniques for handling
data imbalance issues but SMOTE increases the training data size, including varieties
of training data. In our paper, we have used Random Sampling, Down-sampling, and
upsampling to handle data imbalance issue.

(ii) We have developed a heterogeneous ensemble model by collecting a set of classi-
fiers of the different types built up on the same data;

(iii) The performance of each base learner was estimated in this study’s investigation of
relative performance using the suggested heterogeneous ensemble learner. We calculated
metrics values for each base learner and ensemble classifier using statistical measures,
including classification or prediction accuracy, precision, recall, and F-Measure;

(iv)We have experimented on four publicly available projects and chose the best
ensemble method out of MVE and BTE;

(v) We have also computed different kinds of errors that can affect the performance of
the refactoring model at the class level. Depending on errors, we are concluding the best
ensemble classifier.

3. Research Methodology

Given the importance of a refactoring prediction scheme in this analysis, the pre-
dominant emphasis has been placed on exploiting key structural metrics or software code
metrics and their relationship with refactoring proneness to perform class-level refactoring
classification. In other words, this research first intends to identify the optimal set of code
metrics and their association with refactoring proneness to perform each class classification
as refactoring prone or non-refactoring. This can help developers design highly efficient,
reliable, and cost-efficient software solutions. This research uses a multi-phased opti-
mization paradigm where different enhancements, including data enhancement, feature
enhancement, and classification enhancement, are performed. Though the principal goal
is to design a robust and automatic refactoring prediction system, this research employs
different techniques such as data sampling, data normalization, heterogeneous ensemble
learning, and multi-phased feature selection to achieve an eventual goal. Thus, with the
above-stated methods, a few research questions have been defined, which intend to assess
whether the proposed method efficiently yields targeted refactoring prediction purposes.
The identified research questions are given as follows:

RQ1:Can software code metrics characterizing different traits, including inheritance, size, complex-
ity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone
or non-refactoring?

RQ2:Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation
test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3:Can data sampling and normalization help alleviate the data imbalance issue in refactoring
Prediction?

RQ4:Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,
decision trees, and regression methods yield optimal software refactoring prediction for software
quality optimization?

RQ5:Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient
software refactoring prediction than the BTE method?

Appl. Sci. 2022, 12, 12217 8 of 29

3.1. System Model

This section describes the multi-phased process for refactoring prediction at the class
level and considers the overall research goal. The prime intention is to design a novel and
robust automatic refactoring detection and classification system. This research incorporates
a multi-phased optimization measure, focusing on enhancing all key functional compo-
nents, including pre-processing and data augmentation, feature extraction, and feature
selection, followed by ensemble-assisted classification. Distinct from conventional research,
different authors have merely focused on applying classical classification algorithms such
as Naïve Bayes, SVM, or ANN to perform classification over limited code metrics. We
exploit the software program’s major possible structural artifacts to assess its significance
in characterizing refactoring proneness. Observing the significant existing literature and
their inferences where it has been found that code bug-proneness or smell directly relates
to refactoring probability, we consider this trait (i.e., code-smell) as a refactoring signifier to
perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encompasses
the following processes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 29

RQ1: Can software code metrics characterizing different traits, including inheritance, size, com-

plexity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone or

non-refactoring?

RQ2: Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation

test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3: Can data sampling and normalization help alleviate the data imbalance issue in refactoring

Prediction?

RQ4: Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,

decision trees, and regression methods yield optimal software refactoring prediction for software

quality optimization?

RQ5: Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient

software refactoring prediction than the BTE method?

3.1. System Model

This section describes the multi-phased process for refactoring prediction at the class

level and considers the overall research goal. The prime intention is to design a novel and

robust automatic refactoring detection and classification system. This research incorpo-

rates a multi-phased optimization measure, focusing on enhancing all key functional

components, including pre-processing and data augmentation, feature extraction, and

feature selection, followed by ensemble-assisted classification. Distinct from convention-

al research, different authors have merely focused on applying classical classification

algorithms such as Naïve Bayes, SVM, or ANN to perform classification over limited

code metrics. We exploit the software program’s major possible structural artifacts to

assess its significance in characterizing refactoring proneness. Observing the significant

existing literature and their inferences where it has been found that code bug-proneness

or smell directly relates to refactoring probability, we consider this trait (i.e., code-smell)

as a refactoring signifier to perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encom-

passes the following processes.

Figure 1. proposed methodology for refactoring prediction at the class level.

❖ Refactoring Data Preparation, Feature Extraction;

❖ Multi-phased Feature Selection;

❖ Sampling;

Figure 1. Proposed methodology for refactoring prediction at the class level.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 29

RQ1: Can software code metrics characterizing different traits, including inheritance, size, com-
plexity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone or
non-refactoring?

RQ2: Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation
test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3: Can data sampling and normalization help alleviate the data imbalance issue in refactoring
Prediction?

RQ4: Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,
decision trees, and regression methods yield optimal software refactoring prediction for software
quality optimization?

RQ5: Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient
software refactoring prediction than the BTE method?

3.1. System Model
This section describes the multi-phased process for refactoring prediction at the class

level and considers the overall research goal. The prime intention is to design a novel and
robust automatic refactoring detection and classification system. This research incorpo-
rates a multi-phased optimization measure, focusing on enhancing all key functional
components, including pre-processing and data augmentation, feature extraction, and
feature selection, followed by ensemble-assisted classification. Distinct from convention-
al research, different authors have merely focused on applying classical classification
algorithms such as Naïve Bayes, SVM, or ANN to perform classification over limited
code metrics. We exploit the software program’s major possible structural artifacts to
assess its significance in characterizing refactoring proneness. Observing the significant
existing literature and their inferences where it has been found that code bug-proneness
or smell directly relates to refactoring probability, we consider this trait (i.e., code-smell)
as a refactoring signifier to perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encom-
passes the following processes.

Figure 1. proposed methodology for refactoring prediction at the class level.

 Refactoring Data Preparation, Feature Extraction;
 Multi-phased Feature Selection;
 Sampling;

Refactoring Data Preparation, Feature Extraction;

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 29

RQ1: Can software code metrics characterizing different traits, including inheritance, size, com-
plexity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone or
non-refactoring?

RQ2: Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation
test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3: Can data sampling and normalization help alleviate the data imbalance issue in refactoring
Prediction?

RQ4: Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,
decision trees, and regression methods yield optimal software refactoring prediction for software
quality optimization?

RQ5: Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient
software refactoring prediction than the BTE method?

3.1. System Model
This section describes the multi-phased process for refactoring prediction at the class

level and considers the overall research goal. The prime intention is to design a novel and
robust automatic refactoring detection and classification system. This research incorpo-
rates a multi-phased optimization measure, focusing on enhancing all key functional
components, including pre-processing and data augmentation, feature extraction, and
feature selection, followed by ensemble-assisted classification. Distinct from convention-
al research, different authors have merely focused on applying classical classification
algorithms such as Naïve Bayes, SVM, or ANN to perform classification over limited
code metrics. We exploit the software program’s major possible structural artifacts to
assess its significance in characterizing refactoring proneness. Observing the significant
existing literature and their inferences where it has been found that code bug-proneness
or smell directly relates to refactoring probability, we consider this trait (i.e., code-smell)
as a refactoring signifier to perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encom-
passes the following processes.

Figure 1. proposed methodology for refactoring prediction at the class level.

 Refactoring Data Preparation, Feature Extraction;
 Multi-phased Feature Selection;
 Sampling;

Multi-phased Feature Selection;

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 29

RQ1: Can software code metrics characterizing different traits, including inheritance, size, com-
plexity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone or
non-refactoring?

RQ2: Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation
test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3: Can data sampling and normalization help alleviate the data imbalance issue in refactoring
Prediction?

RQ4: Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,
decision trees, and regression methods yield optimal software refactoring prediction for software
quality optimization?

RQ5: Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient
software refactoring prediction than the BTE method?

3.1. System Model
This section describes the multi-phased process for refactoring prediction at the class

level and considers the overall research goal. The prime intention is to design a novel and
robust automatic refactoring detection and classification system. This research incorpo-
rates a multi-phased optimization measure, focusing on enhancing all key functional
components, including pre-processing and data augmentation, feature extraction, and
feature selection, followed by ensemble-assisted classification. Distinct from convention-
al research, different authors have merely focused on applying classical classification
algorithms such as Naïve Bayes, SVM, or ANN to perform classification over limited
code metrics. We exploit the software program’s major possible structural artifacts to
assess its significance in characterizing refactoring proneness. Observing the significant
existing literature and their inferences where it has been found that code bug-proneness
or smell directly relates to refactoring probability, we consider this trait (i.e., code-smell)
as a refactoring signifier to perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encom-
passes the following processes.

Figure 1. proposed methodology for refactoring prediction at the class level.

 Refactoring Data Preparation, Feature Extraction;
 Multi-phased Feature Selection;
 Sampling;

Sampling;

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 29

RQ1: Can software code metrics characterizing different traits, including inheritance, size, com-
plexity, cohesion, coupling, etc., be an efficient identifier to classify a code as refactoring-prone or
non-refactoring?

RQ2: Can a multi-phased feature selection method (Wilcoxon significant text, Pearson correlation
test, and PCA) be used to help perform accurate software refactoring prediction?

RQ3: Can data sampling and normalization help alleviate the data imbalance issue in refactoring
Prediction?

RQ4: Can a heterogeneous ensemble structure with ANN classifiers, extreme learning methods,
decision trees, and regression methods yield optimal software refactoring prediction for software
quality optimization?

RQ5: Can a heterogeneous ensemble classifier with MVE ensemble structure yield more efficient
software refactoring prediction than the BTE method?

3.1. System Model
This section describes the multi-phased process for refactoring prediction at the class

level and considers the overall research goal. The prime intention is to design a novel and
robust automatic refactoring detection and classification system. This research incorpo-
rates a multi-phased optimization measure, focusing on enhancing all key functional
components, including pre-processing and data augmentation, feature extraction, and
feature selection, followed by ensemble-assisted classification. Distinct from convention-
al research, different authors have merely focused on applying classical classification
algorithms such as Naïve Bayes, SVM, or ANN to perform classification over limited
code metrics. We exploit the software program’s major possible structural artifacts to
assess its significance in characterizing refactoring proneness. Observing the significant
existing literature and their inferences where it has been found that code bug-proneness
or smell directly relates to refactoring probability, we consider this trait (i.e., code-smell)
as a refactoring signifier to perform (refactoring) classification.

The phases of our proposed model are shown in Figure 1 and the model encom-
passes the following processes.

Figure 1. proposed methodology for refactoring prediction at the class level.

 Refactoring Data Preparation, Feature Extraction;
 Multi-phased Feature Selection;
 Sampling;

Heterogeneous Ensemble Structure-Based Refactoring Prediction

This research hypothesizes that structural traits such as (code) size, inheritance, com-
plexity, cohesion, coupling, etc., directly relate to code smell and refactoring probability.
We applied benchmark data for refactoring analysis from the tera-PROMISE repository.
Noticeably, tera-PROMISE data encompasses benchmark software data with different refac-
toring quotients. Obtaining a total of 125 features are extracted, which are later processed
for the Wilcoxon significance (Rank sum) test (WRS), the Pearson correlation test (PCT),
and principal component analysis was used in a multi-phased feature selection process
(PCA). We obtained the feature set or data and performed data augmentation with sam-
pling and normalization techniques. At first, we performed data augmentation with three
different sampling methods: random, upsampling, and downsampling. Thus, to obtain
the set of samples or data, we performed Min-Max normalization, which maps all inputs
or data in the range of 0–1. Thus, the proposed data augmentation model alleviates data
imbalance, avoiding problems with local minima and convergence. Once the normalized
data is obtained, we presented our heterogeneous ensemble-based categorization model,

Appl. Sci. 2022, 12, 12217 9 of 29

which performs a class-level refactoring prediction. Distinct from conventional machine
learning methods for refactoring analysis, in this research, classifiers from different types,
such as decision trees, ANN methods, ELM methods, and SVM algorithms, were used
as a novel heterogeneous ensemble model built around a base classifier. Employing the
maximum voting ensemble (MVE) concept, our proposed method performed class-level
refactoring assessment and classification that eventually exhibited better performance than
the individual classifier as the standalone classification model. This section discusses the
key techniques applied and the respective implementation details to design an automatic
refactoring prediction model for software quality optimization.

3.1.1. Refactoring Data Preparation

Considering overall research intent, where the focus is placed on performing refactor-
ing analysis and predicting whether a software and its components (say, class) might be
refactored or not, we hypothesize code smells as the trait signifying refactoring probability
in a software.

We considered the standard benchmark data from the tera-PROMISE repository
(https://github.com/dspinellis/awesome-msr) (accessed on 20 March 2020). The exact
data set is available in the URL https://github.com/rasmitapanigrahi/data-set (accessed
on 20 March 2020) [52]. The four different (refactoring) datasets are collected with var-
ied refactoring quotients to assess the proposed refactoring analysis model’s efficiency
shown in Table 1. We considered a set of four refactoring datasets obtained from the
tera-PROMISE repository. These datasets typically encompass source code metrics of
object-oriented software programs that employ techniques such as Helstied, Chidamber,
Kemerer Java Virtual Machine (CKJM), etc. Since these data elements signify a software’s
structural traits, identifying associations and mapping their impact towards refactoring
can help machine learning model(s) predict or classify a software component or code for
its refactoring likelihood. We considered manually validated data for refactoring [14,15],
which comprises almost 125 source code metrics obtained employing RefFinder-based
extraction [53], followed by SourceMeter tool [54] (https://www.sourcemeter.com/, (ac-
cessed on 19 December 2020)) based metrics extraction. Noticeably, this research’s code
metrics are related to different features, including coupling, cohesion, size, complexity,
inter-component dependency, etc. We obtained a total of 125 such features to assess their
respective efficacy toward refactoring prediction. The literature reveals that numerous code
metrics can characterize the refactoring probability of a class, such as cohesion between
individual clones, cyclomatic complexity, the total number of lines of code, the number
of methods, the number of methods overridden, etc. Exploring this in-depth, it has been
found that hundreds of software metrics characterizing software code quality can be used
to assess refactoring analysis. Undeniably, several code metrics can characterize source
code quality and eventually the refactoring probability; however, it is not inevitable that
all metrics can have a similar significance to classify a class as refactoring prone or to be
refactored. Considering this fact, we performed a statistical significance level estimation.

Table 1. Implemented Data set.

Projects No. of Class No. of Refactored
Class

No. of Non-Refactored
Class

Refactoring Class
Percentage

Non-Refactoring
Class Percentage

Antlr4 408 23 385 5.64 94.36

Junit 655 9 646 1.37 98.63

Mct 2028 15 2013 0.74 99.26

Titan 1158 13 1145 1.12 98.88

https://github.com/dspinellis/awesome-msr
https://github.com/rasmitapanigrahi/data-set
https://www.sourcemeter.com/

Appl. Sci. 2022, 12, 12217 10 of 29

3.1.2. Multi-Phased Feature Selection

Among the important possible code metrics, a few can have vital significance in
refactoring prediction. This research applies a multi-phased feature selection method using
three statistical significance predictors.

(a) Wilcoxon Signed Rank Test (WRS);
(b) Significant Test;
(c) Cross-Correlation Test.

A brief of these algorithms is given as follows:

Wilcoxon Signed-Rank Test

As the name suggests, Wilcoxon Signed Rank Test (WRS) measures the correlation
between multiple factors and how that affects classification accuracy. It is a non-parametric
test that uses independent samples. With this goal in mind, we used this method to
assess the correlation between multiple feature values and their related relevance for
refactoring prediction. In other words, the input vectors are characterized by whether they
influence the refactoring probability. The rank test shows how each metric is related to
the refactoring probability. Functionally, the rank-sum test applies two distinct types of
variables: independent and dependent variables. It assesses the correlation to determine
the essential variable with a strong connection to the classification output. The independent
variable was defined as user details (code metrics), while refactoring each class’s probability
was defined as the dependent variable. By implementing this method, we retrieve the
p-value of each user concerning the refactoring probability and show how efficiently the
refactoring likelihood is correlated to the code metrics or vice versa. WRS helped in
handling the uncertainty in the code metrics and identified by removing unimportant
elements and significant aspects.

Significant Test

Univariate Logistic regression (ULR) is a standard method for estimating the degree
of correlation between independent and dependent variables, similarly to the rank test.
Refactoring proneness can be predicted by analyzing the code metrics of each class. In the
previous selection phase, we applied ULR to the chosen code metrics or features (i.e., rank-
sum selected features). ULR evaluated the significance of the selected metrics to identify or
characterize class-level refactoring. The independent variable (refactoring proneness) was
used to estimate the dependent variable’s variance (change %). (i.e., code-metrics).

logit[π(x)] = α0 + α1X (1)

In Equation (1), logit π(x) and X state the dependent (i.e., refactoring proneness) and
the independent (code-metrics) variables, respectively. Here, it signifies the probability
factor of the significance of each category in Equation (2).

π(x) =
eα0+α1X

1 + eα0+α1X (2)

In our proposed model, the p-value of the regression coefficient is used to figure out
how important each code-metric is. Any metric with a p-value of more than 0.05 was
thought to be important for predicting refactoring (proneness). Metrics with a p-value of
less than 0.05 were taken out of the chosen final set of chosen features.

Cross-Correlation Test

In this method, we ran a cross-correlation test using the Pearson correlation estimation
algorithm after extracting ULR-filtered code-structural metrics. Code-metrics with a p > 0.5
correlation coefficient were used to classify refactoring proneness. After receiving code-

Appl. Sci. 2022, 12, 12217 11 of 29

metrics, we normalized and augmented data to improve computation. The next section
describes the pre-processing procedures.

3.1.3. Sampling

We have used a publicly accessible dataset from the tera-PROMISE repository for our
investigations. A well-known repository for software engineering research datasets on
code analysis, errors, effort, refactoring, and test creation is the tera-PROMISE website [52].
To make our studies simple to reproduce and use by other researchers for benchmarking
and comparison, we have used a dataset from the tera-PROMISE repository. In this work,
we are implementing data sampling techniques on four projects. The data set shown in
Table 1 is highly imbalanced because the refactored number of samples is different from the
non-refactored samples. The implemented projects are, i.e., Antlr4, Junit, Mct, and Titan,
having 408, 655, 2028, and 1158 classes.

Considering data imbalance problems in data learning and classification, we used
three data sampling methods: random sampling, upsampling, and downsampling. Our
proposed method incorporates different sampling methods that ensure data augmentation
so that it encompasses major possible features or information for further computation.
Noticeably, the considered refactoring dataset contains many samples for each feature
characterizing software structure and eventual refactoring probability. For illustration,
let the total sample be 100. Then, in the random sampling method, five data samples are
selected randomly (assuming that each element would have an equal probability of being
identified as a refactoring class) from the total samples. In contrast, merely five samples
from ninety-five non-refactoring samples are considered in downsampling.

On the contrary, to perform upsampling, a small data element (say five) is extrapolated
or augmented into the large scale (say, ninety-five to constitute one-hundred samples) non-
refactoring data samples. Thus, the inclusion of randomly selected XRand, upsampled
(XUpsampled), and downsampled data (XDownsampled) along with the original data (XOriginal).
They constituted augmented data for further computation shown in Equation (3).

FeatComposite =
[
XOriginal, XRand, XUpsampled, XDownsampled

]
(3)

Data Normalization

In enormous classification or prediction systems, extensive features-based models,
data imbalance impacts system performance. The considered data set may comprise
minor features indicating refactoring probability, which might generate classification bias
and impair overall prediction accuracy; for example, let the dataset have one-hundred
elements, out of which merely between four and five data elements signify the refactoring
tract. Therefore, learning the data might cause or influence overall performance, especially
classification accuracy. A dual-phase data augmentation method was incorporated into
the proposed model by executing data normalization followed by data re(sampling) to
alleviate these problems. We applied the Min-Max normalization method, while for data
resampling, three methods, random sampling, downsampling, and upsampling, have been
applied. A brief of these methods is given as follows:

Data items can be of varying sizes and ranges; hence, computing over such unstruc-
tured and broad-scaled data can cause learning models to converge prematurely. As a result,
it can impact the overall precision of the suggested model. We have normalized the data
using the Min-Max technique in light of this data imbalance issue. Our suggested Min-Max
normalization model normalizes input data from a functional standpoint in the 0 to 1 range.
Our suggested normalization approach maps and linearly transforms the input data items
inside the interval [0, 1]. Each data element xi of the software component X is functionally

Appl. Sci. 2022, 12, 12217 12 of 29

mapped to its corresponding normalized value xi in the range [0, 1]. Mathematically, we
estimated the normalized value(s) of the input data xi using the formula of Equation (4).

Norm(xi) = x′i =
xi −min(X)

max(X)−min(X)
(4)

In Equation (4), the min(X) and max (X) data elements show the lowest and highest
values of X, respectively.

3.1.4. Heterogeneous Ensemble Structure-Based Class-Level Refactoring Prediction

In most previous works implementing machine learning approaches for estimating
refactoring-prone code-refactoring probabilities, the authors used various machine learning
approaches to apply the algorithms as standalone classifiers. Diverse classification perfor-
mance is exemplified by distinct methods, producing distinct results for the same dataset.
This study creates a highly robust ensemble learning model by combining classifiers from
several categories, including pattern mining SVM, decision tree, neural network, and ex-
treme learning machine. The strategic combination of various machine learning methods
provides a heterogeneous ensemble model for class-level refactoring prediction. The ensu-
ing sections summarize the many machine learning algorithms and classifiers that have
been implemented. Noticeably, the proposed refactoring prediction model performs learn-
ing and classification over 24 different features or code metrics for four different samples
obtained as XRand, XUpsampled, XDownsampled, and XOriginal. Obtaining a total of 96 feature
sets, we performed learning using various machine learning algorithms and ensemble
models. We used many machine learning methods as basic classifiers, including decision
trees and modified K-NN classifier, Logistic regression, SVM-Linear, SVM-Polynomial,
SVM-RBF, LSSVM, ANN-GD, ANN-GDX, ANN-LM, ANN-RBF, and ELM with different
kernels. A detailed discussion of the proposed machine learning methods is given in the
subsequent section.

Logistic Regression (LR)

LR is one of the most common ways to use regression to group data. It uses the idea
of regression to classify a dependent variable based on more than one input (say, code
metrics). For example, in our proposed refactoring prediction problem, the dependent
variable (software code or class) can be either refactoring prone or not refactoring. In logistic
regression, the base classifier looks at how likely each class needs refactoring based on the
relationship between the code metrics for each class. Mathematically, logistic regression is
presented as Equation (5).

logit[π(x)] = β0 + β1X1 + β2X2 + + βmXm (5)

In Equation (5), the left-hand component logit[π(x)] represents the dependent variable,
whereas Xi represents the independent variable [0–m]. The logistic regression approach
uses the linear regression idea to convert dichotomous outputs to logit function values
ranging from 0 to m denote the total number of independent variables in Equation (5) (here,
the code metrics).

The second field indicates the refactoring propensity of the class during validation.
Consequently, the dependent variable or class-level (x) predicted by LR is denoted by
Equation (6).

π(x) =
eβ0+β1X1+β2X2+......+βmXm

1 + eβ0+β1X1+β2X2+......+βmXm
(6)

Decision Tree (DT.) Algorithm

Pattern classification has traditionally been performed using the Decision Tree method [49,50],
although its efficiency has seen significant improvements throughout time, allowing it to
attain higher accuracy. For example, DT C4.5 and DT C5.0, which are mostly used for data

Appl. Sci. 2022, 12, 12217 13 of 29

mining and categorization, have evolved. DT’s C5.0 method was used as a basis classifier
to perform class-level predictions on the input data. Noticeably, the C5.0 DT algorithm
categorized or labeled each class of the investigated software as either refactor-prone or
non-refactoring. The input data metrics are divided into numerous branches at each node
of the DT, starting at the root node and using an association rule in between the split
criteria. Refactoring-prone and non-refactoring classes were defined using the Information
Gain Ratio (IGR) in the C5.0 method used in this study. Alsolai et al. [55] conducted an
empirical evaluation to find the impact of feature selection techniques, ensemble models,
and sampling techniques implemented on seven data sets for predicting change-proneness
using different source code metrics. However, Murugesh et al. [56] discussed automated
software requirements using machine learning algorithms.

Support Vector Machine (SVM)

SVM is one of the most used supervised machine-learning approaches for pattern
recognition. A binary linear classifier that learns from data that is not probabilistic. SVM
uses the structural risk reduction paradigm to reduce generalization errors on unseen
instances. To achieve the boundary’s value, also referred to as a hyper-plane, in between
the two classes, this method uses support vectors to represent a portion of the training set.
The following function is used in pattern-based classification using SVM-based prediction
in Equation (7).

Y′ = w ∗ φ(x) + b (7)

Collecting the correct weights factor w and bias component b values to complete the
non-linear transformation is essential. We obtain Y′ in Equation (7) by iteratively reducing
the regression risk. The risk of regression is expressed numerically in Equation (8).

Rreg
(
Y′
)
= C ∗

l

∑
i=0

γ
(
Y′i −Yi

)
+

1
2
∗ ‖w‖2 (8)

These two parameters represent the penalty and cost functions, C and, are represented
in Equation (8). Weights are estimated using the method in Equation (9).

w =
l

∑
j=1

(
αj − α∗j

)
φ
(
xj
)

(9)

In Equation (9), ∗ stands for the relaxation factor called Lagrange multipliers. So, the
final answer is Equation (10).

Y′ =
l

∑
j=1

(
αj − α∗j

)
φ
(
xj
)
∗ φ(x) + b

=
l

∑
j=1

(
αj − α∗j

)
∗ K
(
xj, x

)
+ b

(10)

In Equation (10), K(xj, x) stands for the kernel function, which can be linear, polynomial,
a radial basis function (RBF), or something else. We used an SVM base classifier with linear,
polynomial, and RBF kernel functions to predict refactoring in our proposed model.

Artificial Neural Network

We used ANN to classify the heterogeneous ensemble structure as a model of neuro-
computing (base-classifier). ANNs with different learning or weight estimation approaches
are used as the basis learners in this study. The next sections go into great detail regarding
the ANN models that were used in this study. ANN has become one of the most used and
sought-after algorithms among the major neuro-computing ideas. It works similarly to the
human brain in that it learns from different data or patterns to classify data it has not seen
before (s). ANN is a possible significant Artificial Intelligence solution (AI) or decision-

Appl. Sci. 2022, 12, 12217 14 of 29

making task because of how well it learns, how well it learns about depth information, and
how well it can classify related information. It is made up of many neurons that send data
to different layers, such as the input layer and the hidden layer, to be processed. In the
end, classification output is given at the output layer in Figure 2. It uses concepts to reduce
errors to learn from the given data. It determines the difference between the expected
and observed values, called error. It plans to keep lowering the error until it reaches zero,
which means convergence and gives the final output of the output layer. At the output
layer, ANN sorts the data it has received into the expected groups. For example, this paper
divides each class into two groups: those that are easy to refactor and those that are not.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 29

𝑌′ =∑

𝑙

𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗)𝜙(𝑥𝑗) ∗ 𝜙(𝑥) + 𝑏

=∑

𝑙

𝑗=1

(𝛼𝑗 − 𝛼𝑗
∗) ∗ 𝐾(𝑥𝑗 , 𝑥) + 𝑏

(10)

In Equation (10), K(xj, x) stands for the kernel function, which can be linear, poly-

nomial, a radial basis function (RBF), or something else. We used an SVM base classifier

with linear, polynomial, and RBF kernel functions to predict refactoring in our proposed

model.

Artificial Neural Network

We used ANN to classify the heterogeneous ensemble structure as a model of neu-

ro-computing (base-classifier). ANNs with different learning or weight estimation ap-

proaches are used as the basis learners in this study. The next sections go into great detail

regarding the ANN models that were used in this study. ANN has become one of the

most used and sought-after algorithms among the major neuro-computing ideas. It

works similarly to the human brain in that it learns from different data or patterns to

classify data it has not seen before (s). ANN is a possible significant Artificial Intelligence

solution (AI) or decision-making task because of how well it learns, how well it learns

about depth information, and how well it can classify related information. It is made up

of many neurons that send data to different layers, such as the input layer and the hidden

layer, to be processed. In the end, classification output is given at the output layer in

Figure 2. It uses concepts to reduce errors to learn from the given data. It determines the

difference between the expected and observed values, called error. It plans to keep low-

ering the error until it reaches zero, which means convergence and gives the final output

of the output layer. At the output layer, ANN sorts the data it has received into the ex-

pected groups. For example, this paper divides each class into two groups: those that are

easy to refactor and those that are not.

Figure 2. a typical ANN structure.

In practice, obtaining the best classification result requires choosing the right

weights, computing quickly, and so on. Otherwise, it goes through local minima and

premature convergence, which hurts the overall computing efficiency. ANN requires

accurate weight estimates and high learning efficiency to fix these problems and reach a

point where there are no mistakes. To achieve this, ANN undergoes several phased

changes that have made it better at estimating weight and learning. In this paper, we re-

Figure 2. A typical ANN structure.

In practice, obtaining the best classification result requires choosing the right weights,
computing quickly, and so on. Otherwise, it goes through local minima and premature
convergence, which hurts the overall computing efficiency. ANN requires accurate weight
estimates and high learning efficiency to fix these problems and reach a point where there
are no mistakes. To achieve this, ANN undergoes several phased changes that have made
it better at estimating weight and learning. In this paper, we refactored classification
with ANN in different ways. These algorithms (ANN-GD, ANN-GDX, ANN-LM, and
ANN-RBF) were used as base learners to create an ensemble.

An ANN model typically consists of input, hidden, and output layers (see Figure 2
for a visual representation). A linear activation function is applied to the neural network
to produce the same output (Oh = Ih) as the input in our proposed refactoring prediction
model. The hidden layer uses data from the input layer to feed into its sigmoid function
to arrive at the result Oh. With the hidden layer Ih, ANN produces Oh at the output layer
using the sigmoid function, as Equation (11).

Oh =
1

1 + e−Ih
(11)

Most of the time, ANN is written as Y′= f (W,X), where Y′ is the output vector and W
and X are the weights. ANN aims to reduce the error function to improve the algorithm’s
accuracy. So, a mean square error (MSE) function was used as Equation (12).

MSE =
1
n

n

∑
i=1

(
yi − y′i

)2 (12)

In above Equation (12), the parameter y shows the calculated value, while yi shows
the intended result. With our planned refactoring prediction system in mind, we fed 125
code metrics into the ANN, allowing the ANN to determine whether each class needed
refactoring. So, it gives each class of software code a label, which is then used by a
maximum voting ensemble to decide whether the code class is likely to be refactored or not.
As was already said, we used different kinds of ANN in this research, such as ANN-GD,

Appl. Sci. 2022, 12, 12217 15 of 29

ANN-RBF, ANN-LM, etc. Then we have discussed a small part of these algorithms and
how they determine their weights and learn for refactoring prediction at the class level.

a. ANN-GD

ANN intends to minimize the error function for all training sets iteratively. Consider-
ing the learning regression in conjunction with the targeted refactoring signifies a non-linear
weight vector. So, ANN-GD tries to attain a local optimum for learning regression using the
gradient descent (GD) method. Noticeably, the GD method updates weight w iteratively by
substituting wt by wt+1 using Equations (12)–(14).

wt+1 = wt − ηt∇L (13)

wj, t+1 = wj,t − ηt
∂L
∂wj

(14)

In above Equation (13), the parameter ηt signifies the learning rate that reduces as
per t and ∇L presents the error value. Performing GD based weight estimation and
corresponding learning, ANN-GD classifies each code class as refactoring prone or non-
refactoring and labels it as “1” for refactoring prone and “0” for non-refactoring.

b. ANN-RBF

RBF-based ANN models have an input, a hidden, and an output layer, similarly to
traditional ANN models. However, differing from conventional methods, the neurons in
the hidden layer have Gaussian transfer functions with inversely proportional outputs.
ANN-RBF is the same as K-Means clustering and Probabilistic Neural Networks (PNN).
On the other hand, ANN-RBF has many neurons for each data point, while PNN only has
one neuron for each data point (but lower than the number of training points). PNN is
appropriate for modest or medium-sized datasets, but its efficiency is problematic for our
refactoring prediction system, which can include many data items. In our ANN-RBF model,
hidden units enable a collection of random input pattern functions. In this approach,
the hidden units are radial centers, a vector c1, c2, . . . , ch. Non-linear transformation
transforms input space into hidden space. The translation from hidden unit space to output
space remains linear (n1) for n-point input networks. In the implemented ANN-RBF model,
each hidden unit has its own receptive field in the input space. Similarly to regular ANN
models, RBF-based ANN models have an input, hidden, and output layer. In contrast to
conventional methods, however, the neurons in the hidden layer have Gaussian transfer
functions with reverse proportional outputs. ANN-RBF is functionally equivalent to K-
Means clustering and Probabilistic Neural Network (PNN). PNN has a single neuron for
each training data point, but ANN-RBF contains numerous neurons (but lower than the
number of training points).

c. ANN-LM

In many classification situations, the ANN-GD and ANN-RBF algorithms have proved
successful. However, the issues of adaptive weight assignment and learning remain
unsolved. The ANN-LM technique, in contrast to standard neuro-computing models,
iteratively accomplishes localization of the minimum value of the multivariate function,
sometimes called the Sum of Squares (SoS) non-linear real-valued functions. It makes
stronger the ANN-ability LM’s to perform weight updates quickly, which speeds up the
learning process and prevents local minima. As an additional feature of the ANN-LM
model, error minimization is swiftly achieved by setting the learning rate. Weighing is
updated according to ANN-weighting LM’s algorithm shown in Equation (15).

Wj+1 = Wj −
(

JT
j Jj + µI

)−1
Jje j (15)

In Equation (15), Wj is the current weight, and Wj+1 is the updated weight in the
preceding Equation (15). The identity matrix is represented by J in Equation (15). ANN-GD

Appl. Sci. 2022, 12, 12217 16 of 29

is characterized by a low value of the combination coefficient. The Jacobian matrix is used
to train the ANN-LM. In terms of functionality, the refactoring proclivity of a class can be
determined using ANN-LM as a base classifier. A recently developed neuro-computing
model, ELM has a stronger convergence and learning ability than classical techniques,
such as neural networks. As a result of this robustness, in this paper, we have used ELM
with multiple kernel functions to predict the refactoring propensity of a given class. To
accomplish refactoring proneness classification and per-class labeling, we employed ELM
with several kernel functions, including linear, polynomial, and RBF, which were applied
as base classifiers. A final prediction was made utilizing the MVE ensemble concept.

Extreme Learning Machine (ELM)

Differing from major conventional neuro-computing models, as discussed above, they
undergo certain local minim and convergence and find themselves limited to function
over large-scale data. These problems become more severe with large datasets, which
demand more input layers and a corresponding ANN structure. Consequently, with
classical ANN models for large data sizes, the neurons at the hidden layer also increase,
further augmenting the number of weight parameters required for learning. As a result,
this makes classical neuro-computing methods vulnerable to high latency and convergence
issues. To alleviate such problems, ELM can be a potential alternative. ELM is defined as a
single-layered multi-feed-forward neural network (SL-MFNN) that allows more efficient
generalization than classical approaches. Using random node selection and corresponding
weight estimation makes it more time-efficient. Our proposed refactoring classification
method has applied ELM as a base classifier to constitute a heterogeneous ensemble
structure. Inputting the 125 code metrics from software, it exhibits multivariate regression,
enabling the labeling each class as refactoring prone or non-refactoring. A snippet of the
typical ELM model is given in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 29

Figure 3. A typical ELM structure for refactoring Prediction.

Observing Figure 3, it can be found that ELM inputs comprise X and Y, where X

where 𝑋 = (𝑗1, 𝑗2, … . . , 𝑗𝑚, 𝑦) and 𝑦be the targeted value Noticeably, data signifies a

vector having m + 1 values, while the outputs from the 𝑖th hidden layer are given as

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋) . In 𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋)𝑏𝑖 presents the bias value of the ith neuron, while 𝑎𝑖 =

(𝑎𝑖1, 𝑎𝑖2, …… , 𝑎𝑖𝑚, 𝑎𝑖𝑦) refers to the weight vector. Similarly, 𝑎𝑖𝑠(𝑠 = 1,2, …… ,𝑚, 𝑦) pre-

sents the weights between the sth input layer and the 𝑖th hidden layer. Thus, the output

is in Equation (16) with the above-defined ELM model.

𝑦(𝑡 + 𝑘) = 𝑓(𝑋) =∑

𝐿

𝑖=1

𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋) (16)

In Equation (16), 𝛽𝑖 = (𝛽𝑖1, … , 𝛽𝑖𝑛, 𝛽𝑖𝑦)
′
 presents the weight vector joining the hid-

den and output layers. Moreover, the connecting weights in between the 𝑖th hidden

layer and kth output layer is given by 𝛽𝑖𝑘. The 𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋) can be defined for other hid-

den neurons as shown in Equation (17).

𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋) = 𝑔(𝑎𝑖
′𝑋 + 𝑏𝑖) (17)

In Equation (17), 𝑔:𝑅 → 𝑅 presents the activation function. The ELM model in our

proposed classification problem considers random weight component 𝑎𝑖 and biasing

component 𝑏𝑖. Typically, ELM with L hidden neurons can be hypothesized to exhibit

learning over N samples with zero error probability with the connecting weight 𝛽𝑖 .

Mathematically, the output can be defined as Equation (18).

𝑌𝑗 =∑

𝐿

𝑖=1

𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋𝑗), 𝑗 = 1,2,…… . , 𝑁 (18)

𝑌 = 𝛽𝐻 (19)

where

𝑌 = [𝑦1
𝑌 ⋮ 𝑦𝑁

𝑌]𝑁×𝑀, 𝛽 = [𝛽1
𝑌 ⋮ 𝛽𝐿

𝑌]𝐿×𝑀

𝐻 = [
𝐺(𝑎1, 𝑏1, 𝑋1)… 𝐺(𝑎𝐿 , 𝑏𝐿, 𝑋1)

⋮ … ⋮
𝐺(𝑎1, 𝑏1, 𝑋𝑁)… 𝐺(𝑎𝐿 , 𝑏𝐿, 𝑋𝑁)

]

𝑁×𝐿

(20)

Redefining Equation (19), we obtain output as Equation (20). In the proposed ELM

model, a minimum norm least-squares solution 𝛽∗ is applied to minimize 𝛽∗ in addi-

tion to the weight parameters and bias values. Mathematically, 𝛽∗ is referred to as

Equation (21).

𝛽∗ = 𝐻+𝑌 (21)

In Equation (21), 𝐻+ signifies the Moore–Penrose generalized inverse of the matrix

H. The ELM proposed here has achieved the following significant functions to enable

Figure 3. A typical ELM structure for refactoring Prediction.

Observing Figure 3, it can be found that ELM inputs comprise X and Y, where
X = (j1, j2, , jm, y) and y be the targeted value Noticeably, data signifies a vector
having m + 1 values, while the outputs from the ith hidden layer are given as G(ai, bi, X). In
G(ai, bi, X) bi presents the bias value of the ith neuron, while ai =

(
ai1, ai2, , aim, aiy

)
refers to the weight vector. Similarly, ais(s = 1, 2, , m, y) presents the weights between
the sth input layer and the ith hidden layer. Thus, the output is in Equation (16) with the
above-defined ELM model.

y(t + k) = f (X) =
L

∑
i=1

βiG(ai, bi, X) (16)

In Equation (16), βi =
(

βi1, . . . , βin, βiy
)′

presents the weight vector joining the hidden
and output layers. Moreover, the connecting weights in between the ith hidden layer and
kth output layer is given by βik. The G(ai, bi, X) can be defined for other hidden neurons as
shown in Equation (17).

G(ai, bi, X) = g
(
a′iX + bi

)
(17)

Appl. Sci. 2022, 12, 12217 17 of 29

In Equation (17), g : R→ R presents the activation function. The ELM model in our
proposed classification problem considers random weight component ai and biasing com-
ponent bi. Typically, ELM with L hidden neurons can be hypothesized to exhibit learning
over N samples with zero error probability with the connecting weight βi. Mathematically,
the output can be defined as Equation (18).

Yj =
L

∑
i=1

βiG
(
ai, bi, Xj

)
, j = 1, 2, , N (18)

Y = βH (19)

where

Y =

[
yY

1
... yY

N

]
N×M

, β =

[
βY

1
... βY

L

]
L×M

H =

 G(a1, b1, X1) . . . G(aL, bL, X1)
... . . .

...
G(a1, b1, XN) . . . G(aL, bL, XN)

N×L

(20)

Redefining Equation (19), we obtain output as Equation (20). In the proposed ELM
model, a minimum norm least-squares solution β∗ is applied to minimize β∗ in addition to
the weight parameters and bias values. Mathematically, β∗ is referred to as Equation (21).

β∗ = H+Y (21)

In Equation (21), H+ signifies the Moore–Penrose generalized inverse of the matrix H.
The ELM proposed here has achieved the following significant functions to enable binary
classification. In our proposed ELM-based classifier, the output y∗ for each class is obtained
as per Equation (22).

y∗ =
L

∑
i=1

β∗i g(aix + bi) (22)

where the error function to be reduced is the root mean square error shown in Equation (23).

RMSE =

√
∑N

i=1 (ŷ(i)− y(i))2

N
(23)

In Equation (23), ŷ(i) signifies the expected or targeted output, while y(i) presents the
actual output N is the number of observations. RMSE is the square root of the variance of
the residuals is considered as the standard deviation of the unexplained variance, which
is reduced over iterations to achieve higher accuracy (utilizing optimal weight and bias
values estimation). In the proposed heterogeneous ensemble structure, we applied ELM
with three different kernel functions, linear, polynomial and RBF, which classify each class
as refactoring prone and non-refactoring. All base classifiers label on each class have been
used for the MVE ensemble to perform class-level refactoring prediction.

Least Squares Support Vector Machine (LSSVM)

The least-squares linear system is used as a loss function in LSSVM, which is a statisti-
cal learning theory. Regularization networks and LSSVM are very similar. The optimization
problem comes down to solving linear equations with the quadratic cost function. Accord-
ing to the source [49], we have used the LSSVM algorithm with three different kinds of
kernels—linear, polynomial, and RBF kernel functions—which have more information on
the LSSVM algorithm. Du et al. [57] implemented a new LSSVM ensemble model for aero
engine performance parameter chaotic prediction.

Appl. Sci. 2022, 12, 12217 18 of 29

Maximum Voting Ensemble (MVE) Model

This paper used the aforementioned base classifiers to form a unique heterogeneous
ensemble learning model by applying them as the base classifier. To create an ensemble
structure, all classifiers are applied to the same dataset and asked to predict whether or not
a given class should be refactored (labeled as “1”) or not (labeled as “0”). Therefore, after
obtaining each software code’s class outputs (i.e., labels), “Maximum Voting” is achieved
for each class. The class that receives the most votes (i.e., 1 or 0) is considered the final
category (refactoring prone or non-refactoring).

4. Results and Discussion

Considering the significance of reliable software design and probable fault avoidance,
the refactoring concept has been recognized as a potential approach. Practically, the refac-
toring method enables the identification of probable code smells and vulnerabilities and
introduces changes to retain code sanity and reliability without making any significant
change in functional behavior. Its significance becomes inevitable, especially in the modern
software industry where firms try to make component reuse, FOSS to save cost. The indus-
try employs manual testing, regression-based methods, etc., to identify such refactoring
probability; however, in contrast to the cost-minimization objective, it increases cost and
makes delivery time-consuming. It does not guarantee human error avoidance, especially
when the software program size is more. Considering such issues, developing an automatic
software refactoring estimation model becomes inevitable. This paper developed a highly
robust code-metrics-enabled artificial intelligence concept, exploiting hundreds of the code
metrics to assess each class’s refactoring probability, vulnerability, and allied refactoring
probability. To achieve this, the research employed a multi-phased paradigm where, at first,
a standard source code chunk was obtained from a software engineering benchmark dataset
named PROMISE. At first, a total of 125 source code metrics were obtained, including
Halstead, Chidambaram, and Kamarer code metrics, Object Oriented Code metrics, etc.,
realizing that among the 125 features, certain features have higher significance towards
refactoring prediction or characterization, while few can be insignificant. Considering this,
we first performed significant feature estimation for which a strategic paradigm encompass-
ing Wilcoxon Signed Rank Test, Significant Test, and Cross-Correlation Test was applied in
sequence. Here, our prime motive was to retain only the most significant features which
can have a high correlation or association with refactoring probability. Here, for significant
estimation, we considered a threshold value of 0.5. Once we had obtained the optimal set of
features, which were 24 in our case, we performed Min-Max normalization, which mapped
each data element into [0, 1] patterns. Noticeably, normalization was mainly performed to
avoid any convergence problem.

A highly significant step was performed with the obtained normalized values, which
major researchers did not address. To be noted, the software or program as a case study
can be of any size with diverse classes, connectivity, coupling, cohesion, etc. Under such
circumstances, the probability of data imbalance increased significantly. Unfortunately, it in-
creases the likelihood of false classification, so avoiding such data imbalance was necessary.
This paper applied different data-sampling algorithms with this motive, including random
sampling, downsampling, and upsampling. We used the confidence interval concept to
upsample the input video data, which helped retain features with significance in almost
95% of the original metrics or samples. Thus, with the actual 24 samples or data metrics as
an input, we obtained 96 feature samples containing the original sample, random sample,
and downsampled and upsampled data, for each of the source code metrics. Noticeably, in
each class’s proposed method, we applied 96 feature samples, making classification both
robust and accurate. Finally, we performed a two-class classification with the 96 feature sets,
classifying each software code class as refactoring prone or non-refactoring. Noticeably,
we realized that each classifier has a different classification performance and generalizing
performance based on specific random classifiers is not suitable.

Appl. Sci. 2022, 12, 12217 19 of 29

This paper designed a novel heterogeneous classifier with machine learning methods
of the different types. It strengthened our proposed model to achieve better learning and
classification in conjunction with ensemble concepts such as maximum voting ensemble or
base-trained ensemble models. As base classifiers, we applied a decision tree, enhanced
K-NN classifier, Logistic regression, SVM-Linear, SVM-Polynomial, SVM-RBF, LSSVM with
different kernels, ANN-GD, ANN-GDX, ANN-LM, ANN-RBF, ELM with different kernels.
Differing from existing approaches where authors split data into multiple chunks and apply
different classifiers for ensemble design, we applied the same feature metrics as input-to-
all classifiers and performed two-class classification. This method labeled each class as
refactoring-prone and non-refactoring, labeled as 1 and 0, respectively. Thus, applying MVE
for each class, we automatically classified that class or code component. The prime motive
of applying multiple classifiers and their variants was to gain the maximum possible
opinion towards refactoring a class’s proneness to make an optimal classification. To
enhance accuracy, we applied f5-fold cross-validation that resulted in better performance as
99.76. The proposed system was developed using MATLAB2019b, simulated over Microsoft
OS with i3 and 4 GB RAM.

It is commonly assumed that ensemble classifiers will outperform classical base learn-
ers or single machine learning methods in ensemble classification methods. This paper
investigated relative performance by estimating each base learner’s performance using the
proposed heterogeneous ensemble learner. To achieve it for each classifier, false positives
and false negatives (FN) were mapped out into a confusion matrix, which identifies the real
positives and false negatives (FN). We used statistical measures such as classification or
prediction accuracy, precision, recall, and F-Measure for calculating these matrix values for
each base learner and ensemble classifier. The definitions of these performance variables
are given in Table 2. During multiple number of times execution, precision measurement is
vital for finding the best result in proposed model. Even the authors themselves may not be
aware of the degree of precision their algorithms in their current implementation converges.
Without knowing the convergence level of all the data, comparing multiple methodologies
is not a valid method and could lead to incorrect conclusions. If at one 10-time execution,
the obtained least and peak values for our proposed model with MVE are 0.0017 and 0.0123,
respectively, then we can observe that the average precision of our model is 0.0140. We
have applied the same approach utilized in the paper [58] to evaluate the precision of
our model. Different base classifiers and ensemble models’ statistical performance has
been measured (i.e., decision tree, K-NN classifier, Logistic regression, SVM-Linear, SVM-
Poly, SVM-RBF, LSSVM, LSSVM-Lin, LSSVM-Poly, LSSVM-RBF, ANN-GD, ANN-GDX,
ANN-LM, ANN-RBF, ELM-Lin, ELM-Poly, ELM-RBF, MVE, and BTE).

Table 2. Performance Parameters.

Parameter Mathematical Expression Definition

Accuracy (TN+TP)
(TN+FN+FP+TP)

This calculation signifies the proportion of projected
refactoring-resistant modules that are inspected out of all modules.

Precision TP
(TP+FP)

Specifies the extent to which repeated tests produce the same
findings under unchanged conditions.

F-measure Recall.Precision
Recall+Precision

It takes the recall and precision numbers and makes a single
number, the harmonic mean of those two.

Recall TP
(TP+FN)

It displays how many things there are to be picked.

Observing the above-derived results, it can be easily found that the proposed ensemble
learning method’s accuracy is higher than any other base classifier. The performance of all
the classifiers is shown in Table 3, and from the results, we can conclude that MVE achieves
a better result than all kinds of individual frequently used classifiers.

Appl. Sci. 2022, 12, 12217 20 of 29

Table 3. Performance values of ensemble classifiers. Bold identifies the best classifier’s result in
the model.

Techniques Accuracy
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

Logistic regression 70.73 69.93 71.93 70.91

Decision Tree 69.81 71.32 73.51 72.35

ANN-GDX 91.48 88.43 81.02 84.56

ANN-LM 91.90 83.94 84.17 84.05

ANN-GD 89.38 84.61 83.91 84.25

SVM-Lin 69.84 70.90 70.06 70.47

SVM-Poly 69.84 70.94 71.00 70.96

SVM-RBF 69.84 69.91 69.99 69.94

LSSVM-Lin 88.42 89.91 86.61 88.22

LSSVM-Poly 88.05 88.94 89.59 89.07

LSSVM-RBF 89.90 94.31 88.92 91.53

ELM-Lin 89.73 90.84 90.62 90.72

ELM-Poly 90.47 91.03 90.01 90.51

ELM-RBF 93.50 91.07 91.10 91.08

MVE 99.76 99.93 98.96 99.44

BTE 99.56 99.16 98.10 98.62

Error Profiling

As mentioned in the previous sections, ensemble learning aims to reduce prediction
errors by amalgamating different classifiers and their respective performances over the
original feature data. As a result of this, the proposed ensemble classifier has been eval-
uated in this paper in terms of different error profile parameters, such as mean absolute
error (MAE), root means square error (RMSE) means relative error magnitude (MMSE), etc.
The performance comparison was performed with other base classifiers to test the effec-
tiveness of the proposed ensemble learning model refactoring prediction through various
errors shown in Table 4. A snippet of the various error parameters and their respective
mathematical models is discussed below.

(a) Mean Absolute Error (MAE);
(b) Standard Error of the Mean (SEM);
(c) Mean Magnitude of the Relative Error (MORE);
(d) Root Mean Square Error (RMSE).

Observing the results in Table 3, it can be found that the proposed ensemble classifier
exhibits a minimum of the other base learners. It confirms the efficiency and robustness
of the proposed ensemble classifier. Thus, considering the overall research outcomes,
the projected ensemble classifier containing base learners can perform highly precise and
consistent classification in Table 3. The proposed ensemble classifier has exhibited better
performance for refactoring prediction that can eventually help developers and companies
achieve reliable software development.

We have shown the comparative study among feature selection and data sampling
techniques in a boxplot diagram. Each ensemble classifier’s performance in terms of
accuracy has been also represented in the form of a boxplot in Figure 4. However, the
numerous boxplots for examining outliers, skewness, interquartile range in accuracy, F-
Measure, and AUC performance metrics for feature selection and data sample strategies
are shown in Figures 5 and 6. The median value, which divides the box into two parts, is
indicated by the red line in the boxplot of Figures 5 and 6. According to Figure 5, the median

Appl. Sci. 2022, 12, 12217 21 of 29

values for the AUC, F-Measure, and Accuracy of all feature selection strategies produce
statistically significant results. Similar to Figure 6, it has been noted that upsampling
has a higher median value for AUC, F-Measure, and Accuracy than other data sampling
approaches. Figure 4 shows the error performances of all the ensemble classifiers during
class-level refactoring model development. We also validate our model with various errors
generated by the ensemble classifiers and we represent their performances in terms of the
chart shown in Figure 7.

Table 4. Error performance by the different base learners and the ensemble classifier. Bold identifies
the classifier with less error in the proposed model.

Techniques MAE MORE RMSE SEM

Logistic regression 0.1968 0.8073 0.542 0.1331

Decision Tree 0.0996 0.7000 0.0200 0.0900

ANN-GDX 0.3001 0.4109 0.1001 0.1642

ANN-LM 0.3109 0.3994 0.1138 0.1981

ANN-GD 0.4111 0.3983 0.1695 0.2001

SVM-Lin 0.1557 0.8623 0.1209 0.0276

SVM-Poly 0.1904 0.8001 0.1245 0.1090

SVM-RBF 0.1321 0.4290 0.1199 0.1008

LSSVM-Lin 0.5731 0.2983 0.0261 0.1990

LSSVM-Poly 0.3901 0.2106 0.0198 0.1179

LSSVM-RBF 0.3860 0.2100 0.0911 0.1108

ELM-Lin 0.2075 0.5892 0.1698 0.1471

ELM-Poly 0.2007 0.4929 0.1604 0.1500

ELM-RBF 0.2000 0.5071 0.1599 0.1403

MVE 0.0057 0.0701 0.0068 0.0107

BTE 0.0912 0.3419 0.1941 0.1610

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 29

the median values for the AUC, F-Measure, and Accuracy of all feature selection strate-

gies produce statistically significant results. Similar to Figure 6, it has been noted that

upsampling has a higher median value for AUC, F-Measure, and Accuracy than other

data sampling approaches. Figure 4 shows the error performances of all the ensemble

classifiers during class-level refactoring model development. We also validate our model

with various errors generated by the ensemble classifiers and we represent their perfor-

mances in terms of the chart shown in Figure 7.

Figure 4. Box plot for ensemble classifier’s accuracy performance.

Figure 5. Accuracy, F-Measure, and AUC Performance over different feature selection techniques.

Figure 6. Accuracy, F-Measure, and AUC performance over different data samples.

Figure 4. Box plot for ensemble classifier’s accuracy performance.

Appl. Sci. 2022, 12, 12217 22 of 29

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 29

the median values for the AUC, F-Measure, and Accuracy of all feature selection strate-

gies produce statistically significant results. Similar to Figure 6, it has been noted that

upsampling has a higher median value for AUC, F-Measure, and Accuracy than other

data sampling approaches. Figure 4 shows the error performances of all the ensemble

classifiers during class-level refactoring model development. We also validate our model

with various errors generated by the ensemble classifiers and we represent their perfor-

mances in terms of the chart shown in Figure 7.

Figure 4. Box plot for ensemble classifier’s accuracy performance.

Figure 5. Accuracy, F-Measure, and AUC Performance over different feature selection techniques.

Figure 6. Accuracy, F-Measure, and AUC performance over different data samples.

Figure 5. Accuracy, F-Measure, and AUC Performance over different feature selection techniques.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 29

the median values for the AUC, F-Measure, and Accuracy of all feature selection strate-

gies produce statistically significant results. Similar to Figure 6, it has been noted that

upsampling has a higher median value for AUC, F-Measure, and Accuracy than other

data sampling approaches. Figure 4 shows the error performances of all the ensemble

classifiers during class-level refactoring model development. We also validate our model

with various errors generated by the ensemble classifiers and we represent their perfor-

mances in terms of the chart shown in Figure 7.

Figure 4. Box plot for ensemble classifier’s accuracy performance.

Figure 5. Accuracy, F-Measure, and AUC Performance over different feature selection techniques.

Figure 6. Accuracy, F-Measure, and AUC performance over different data samples. Figure 6. Accuracy, F-Measure, and AUC performance over different data samples.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 29

Figure 7. Accuracy Measurement for ensemble algorithms.

5. Comparative Analysis

This section summarizes the comparative analysis between different frequently used

classifiers, ensemble classifiers, and deep learning classifiers. Many authors worked on

refactoring prediction by individual machine learning classifiers and ensemble learning

at the class and method levels shown in Tables 5 and 6. Table 5 also represents different

authors’ contributions towards the refactoring prediction development and their limita-

tions too.

Table 5. Limitations of recently published papers by using frequently used classifiers.

Author
No of

Metrics

Method

Level/ Class

Level

Classifiers Results Limitations

Sagar et al. [59]
102 code

metrics
Class Level

Gated

recurrent unit

algorithm

Projects with balanced

data achieve better results

in comparison with

projects with unbalanced

data.

Authors should apply the deep

learning algorithm with

method-level refactoring to

obtain a better result.

Kumar et al. [60]
102 code

metrics
Class Level LSSVM

The mean value of the

Area Under Curve (AUC)

for the LSSVM RBF kernel

is 0.96.

Authors can also apply deep

learning techniques at the method

and class level then there is a

chance of performance

improvement.

Patnaik et. al. [61]
30 code

metrics
Class Level

Naive Bayes

classifiers

 Mean accuracy for the

Gaussian, Bernoulli and

Multinomial classifiers

33.33%, 39%, 48.33%.

The authors should provide a

comparative study and explain

how naïve Bayes differs from

others with the same kernels.

Panigrahi et. al.

[62]

103 code

metrics
Method level

Naive Bayes

classifiers

Mean accuracy (84%) and

AUC (0.78) state that BNB

is superior then the other

naive Bayes classifiers.

There should be comparative

study among naive Bayes and

different classifiers.

Panigrahi et. al.,

[63]

65 code

metrics
Method level

SVM and

Weighted SVM

SMOTE with SVM

achieves good result as

comparison to weighted

SVM.

The authors have to consider

some more parameters for

measuring the model’s efficiency

and should be considered in class

level.

Akour et. al. [64]
102

metrics
Class level

SVM with two

optimized (GA

SVM with GA and Whalle

achieves 96% which is

The authors need to calculate the

AUC value because the data set

Figure 7. Accuracy Measurement for ensemble algorithms.

5. Comparative Analysis

This section summarizes the comparative analysis between different frequently used
classifiers, ensemble classifiers, and deep learning classifiers. Many authors worked on
refactoring prediction by individual machine learning classifiers and ensemble learning
at the class and method levels shown in Tables 5 and 6. Table 5 also represents different
authors’ contributions towards the refactoring prediction development and their limita-
tions too.

Appl. Sci. 2022, 12, 12217 23 of 29

Table 5. Limitations of recently published papers by using frequently used classifiers.

Author No. of Metrics Method
Level/Class Level Classifiers Results Limitations

Sagar et al. [59] 102 code metrics Class Level Gated recurrent
unit algorithm

Projects with
balanced data
achieve better
results in
comparison with
projects with
unbalanced data.

Authors should
apply the deep
learning algorithm
with method-level
refactoring to
obtain a better
result.

Kumar et al. [60] 102 code metrics Class Level LSSVM

The mean value of
the Area Under
Curve (AUC) for
the LSSVM RBF
kernel is 0.96.

Authors can also
apply deep
learning
techniques at the
method and class
level then there is a
chance of
performance
improvement.

Patnaik et. al. [61] 30 code metrics Class Level Naive Bayes
classifiers

Mean accuracy for
the Gaussian,
Bernoulli and
Multinomial
classifiers 33.33%,
39%, 48.33%.

The authors
should provide a
comparative study
and explain how
naïve Bayes differs
from others with
the same kernels.

Panigrahi et. al.
[62] 103 code metrics Method level Naive Bayes

classifiers

Mean accuracy
(84%) and AUC
(0.78) state that
BNB is superior
then the other
naive Bayes
classifiers.

There should be
comparative study
among naive Bayes
and different
classifiers.

Panigrahi et. al.
[63] 65 code metrics Method level SVM and

Weighted SVM

SMOTE with SVM
achieves good
result as
comparison to
weighted SVM.

The authors have
to consider some
more parameters
for measuring the
model’s efficiency
and should be
considered in class
level.

Akour et. al. [64] 102 metrics Class level
SVM with two
optimized (GA and
Whale) algorithm

SVM with GA and
Whalle achieves
96% which is more
than only SVM
84%.

The authors need
to calculate the
AUC value
because the data
set needs to be
more balanced.

Our proposed
model

125 Source code
metrics Class level

Logistic
Regression,
Decision Tree,
SVM, ELM, ANN
with different
kernels, LSSVM
with different
kernels, MVE

MVE achieves a
better result than
others based on
F-measure, Recall
and precision, and
error performance.

We will be
applying the same
for the method
level and field
level.

Appl. Sci. 2022, 12, 12217 24 of 29

Table 6. Ensemble techniques performance based on their type of classifiers.

Author Feature Selection Sampling Techniques Ensemble Classifiers
Performance Limitations

Alsolai et. al. [65] Pearson’s correlation
coefficient and relief.

SMOTE, randomize,
and spread sub-sample

Naive Bayes, support
vector machines,
k-nearest neighbors,
and random forests.
Out of all of them,
random forest achieves
better result the others.

Authors will obtain a
better performance if
they use ensemble
feature selection and
sampling for the same
work.

Aribandi et. al. [66]

Wilcoxon rank sum test,
correlation test,
Recursive Feature
Elimination (RFE)

———

Neural network with
three different training
algorithm, support
vector machine with
three different kernels
least square support
vector machine with
three kernels and they
conclude that LSSVM
provides a better result.

As the data set is highly
unbalanced they
should use some
well-defined data
sampling techniques to
obtain more accurate
result.

Catolino [67] ————— ——————–

Boosting, Bagging,
Random Forest, and
Voting with Logistic
Regression, Simple
Logistic, Naive Bayes,
and Multilayer
Perceptron.

They should consider
different projects
belonging to different
environment rather
than same
environment.

Alenezi et. al. [68] commit based and code
based —————

Logistic Regression,
Naive Bayes, SVM,
Random forest
random forest model
trained with code
metrics resulted in the
best average accuracy
of 75%.

A comparative study
should be provided
between ensemble
learning and deep
learning.

Our proposed model
Wilcoxon rank sum test,
cross-correlation test,
significant test

UPsampling,
Downsampling,
Randomsampling, PCA

Logistic Regression,
Decision Tree, SVM,
ELM, ANN with
different kernels,
LSSVM with differnt
kernels, MVE

We have not considered
method level on more
benchmarking data sets.
So we will be using the
same for method level
refactoring as our
future work.

Researchers have presented many prediction methods based on source code metrics
to forecast the change-proneness of classes. However, several of these models have low
prediction accuracy due to large complexity or imbalanced classes in the data set. Recent
research indicates that utilizing ensembles to combine multiple models, pick features, or
execute sampling can overcome dataset difficulties and enhance prediction accuracy. This
section is designed to offer a comparative study between the existing refactoring model
and our proposed refactoring model. We have considered four performance parameters in
the above comparative analysis in Table 7. According to the accuracy parameter, our model
provides more accurate results than other existing model. The other parameters such as
F-measure, recall, and precision also recommend that the refactoring prediction model with
an ensemble classifier achieves a better result than others, experiencing the least errors.
This work aims to empirically assess the usefulness of ensemble models, feature selection,
and sampling approaches in forecasting refactoring candidates using various errors.

Appl. Sci. 2022, 12, 12217 25 of 29

Table 7. An empirical comparative study of refactoring model at class and method level [State-of-art].

Author with Reference Classifiers Accuracy F-Measure Recall Precision

Sagar et al. [59] LSTM (Text Based) 54.3% 0.21 0.1176 1.0
LSTM (Code metrics) 40.67% 0.67 0.0071 0.014

Sagar et al. [59]

Random forest 75% 0.81 0.75 0.75
Logistic Regression 47% 0.53 0.46 0.45
SVM 44% 0.55 0.43 0.42
Naïve Bayes 35% 0.49 0.35 0.33

Alenezi et. al. [60]
Gated Recurrent unit
Algorithm
with out SMOTE

95.91 35.23 34.26 31.84

Alenezi et. al. [60]
Gated Recurrent unit
Algorithm
with SMOTE

98.17% 100 96.44 98.11

Kumar et al. [61]
LSSVM with out SMOTE 99.67% 0.9958 —– ——
LSSVM with SMOTE 99.17% 0.9958

Patnaik et. al. [62]
(naïve Bayes at class level)

Gaussian 47.33%
—– —— ——Bernoulli 41.33%

Multinomial 32%

Panigrahi et. al. [63]
(naïve Bayes at method level)

Gaussian 63.82%
—– —— ——Bernoulli 70.66%

Multinomial 84.64%

Panigrahi et. al. [64]
SVM with SMOTE 82% —– —— ——
Weighted SVM 88.81%

Akour et. al. [65]
SVM with two optimized
(GA and Whale) algorithm

SVM 88.125 0.92
GA+ SVM 90.25 0.948
Whale + SVM 90.10 0.947
GA + Whale + SVM 90.15 0.947

Gerling [66] Random Forest 0.72 0.72 0.977 0.87
Logistic regression 0.827 0.85 0.95 0.76

Our proposed approach

Logistic regression 70.73 69.93 71.93 70.91
Decision Tree 69.81 71.32 73.51 72.35
ANN-GDX 91.48 88.43 81.02 84.56
ANN-LM 91.90 83.94 84.17 84.05
ANN-GD 89.38 84.61 83.91 84.25
SVM-Lin 69.84 70.90 70.06 70.47
SVM-Poly 69.84 70.94 71.00 70.96
SVM-RBF 69.84 89.91 69.99 69.94
LSSVM-Lin 88.05 89.91 86.61 88.22
LSSVM-Poly 89.90 88.94 89.59 89.07
LSSVM-RBF 89.73 94.31 88.92 91.53
ELM-Lin 90.47 90.84 90.62 90.72
ELM-Poly 90.47 91.03 90.01 90.51
ELM-RBF 93.50 91.07 91.10 91.08
MVE 99.76 99.93 98.96 99.44
BTE 99.56 99.16 98.10 98.62

6. Conclusions and Future Work

This paper focused on an ideal computing environment to predict refactoring that
could promote cost-effective and consistent software design. In the planned model, differ-
ent software metrics as features, including object-oriented code metrics, were considered to
distinguish each refactoring-prone code class and non-refactoring. Considering this aim,

Appl. Sci. 2022, 12, 12217 26 of 29

computing a huge number of software metrics that focus on object-oriented programming
code characteristics such as coupling, cohesion, complexity, depth, dependency, etc., is
considered in this paper. A total of 125 metrics were computed, which need to be pro-
cessed to select significant features. The proposed model aims to retain only significant
features for classification and achieve it, and a multi-phased feature selection method was
implemented. The sequential implementation of the Wilcoxon significant test or rank-
sum test, Pearson Correlation Test and Principal Component Analysis strengthened the
retention of the most important features for further computation and thus achieves higher
computational efficiency.

In this paper, the data imbalance problem has been resolved through three differ-
ent sampling methods: random sampling, upsampling, and downsampling. For clas-
sification, they provided sufficient training data in conjunction with original samples,
performing normalization over final data samples; the proposed model achieved consis-
tent data for subsequent learning and classification. In this research, instead of a single
classical classifier-based prediction model, many classification algorithms, from pattern
mining, decision trees, neuro-computing, etc., were used to create a heterogeneous en-
semble structure that could predict class-level refactoring. This study revealed that the
proposed maximum voting ensemble-based classification model outperforms other state-
of-art base learners and exhibits better efficiency, signifying its robustness in performing
automatic refactoring prediction in the software program. Using multi-traits code features,
multi-phased feature selection, data augmentation (sampling methods to avoid data imbal-
ance), and cross-validation-assisted ensemble classification achieves optimal refactoring
prediction efficiency.

Furthermore, distinct from single feature selection-based data (either of Wilcoxon
rank-sum test, Pearson Correlation Test, or Principal Component Analysis), the combined
features (i.e., all (concatenated) obtained from Wilcoxon rank-sum test, Pearson Correlation
Test, and Principal Component Analysis) could provide more accurate prediction accuracy.
Thus, this research recommends applying multi-traits, code-features, multi-phased feature
selection, data augmentation, and heterogeneous ensemble with different classifiers regard-
ing pattern mining, decision tree, neuro-computing, etc. to develop a refactoring prediction
system that can help companies and developers design software that is more reliable,
cost-effective, and of higher quality. We also plan to implement ensemble classifiers for
refactoring prediction for the method, field, and package levels and on more benchmarking
data sets.

Author Contributions: Conceptualization, R.P., S.M., S.K.K. and L.K.; methodology, S.M. and L.K.;
software, L.K.; validation, R.P. and L.K.; investigation, R.P., S.M. and L.K.; resources, L.K.; data
curation, R.P.; writing—original draft preparation R.P. and S.M., writing—review and editing, S.K.K.
and L.K.; supervision, S.M., S.K.K. and L.K.; project administration, S.M.; funding acquisition, S.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zimmermann, O. Architectural Refactoring: A Task-Centric View on Software Evolution. IEEE Softw. 2015, 32, 26–29. [CrossRef]
2. Bavota, G.; De Lucia, A.; Di Penta, M.; Oliveto, R.; Palomba, F. An experimental investigation on the innate relationship between

quality and refactoring. J. Syst. Softw. 2015, 107, 1–14. [CrossRef]
3. Fowler, M. Refactoring: Improving the Design of Existing Code; Addison-Wesley Professional: Boston, MA, USA, 2018. [CrossRef]
4. Peruma, A.; Simmons, S.; AlOmar, E.A.; Newman, C.D.; Mkaouer, M.W.; Ouni, A. How do I refactor this? An empirical study on

refactoring trends and topics in Stack Overflow. Empir. Softw. Eng. 2021, 27, 11. [CrossRef]

http://doi.org/10.1109/MS.2015.37
http://doi.org/10.1016/j.jss.2015.05.024
http://doi.org/10.1007/3-540-45672-4_31
http://doi.org/10.1007/s10664-021-10045-x

Appl. Sci. 2022, 12, 12217 27 of 29

5. Kessentini, W.; Kessentini, M.; Sahraoui, H.; Bechikh, S.; Ouni, A. A cooperative parallel search-based software engineering
approach for code-smells detection. IEEE Trans. Softw. Eng. 2014, 40, 841–861. [CrossRef]

6. Liu, H.; Guo, X.; Shao, W. Monitor-Based Instant Software Refactoring. IEEE Trans. Softw. Eng. 2013, 39, 1112–1126. [CrossRef]
7. Fontana, F.A.; Braione, P.; Zanoni, M. Automatic detection of bad smells in code: An experimental assessment. J. Object Technol.

2012, 11, 5.
8. Abdelmoez, W.; Kosba, E.; Iesa, A.F. Risk-based code smells detection tool. In Proceedings of the International Conference on

Computing Technology and Information Management (ICCTIM), Dubai, United Arab Emirates, 9–11 April 2014; p. 148.
9. Dewangan, S.; Rao, R.S. Code Smell Detection Using Classification Approaches. In Intelligent Systems; Springer: Singapore, 2022;

pp. 257–266. [CrossRef]
10. Yordanos, F. Detecting Code Smells Using Machine Learning Techniques. Ph.D. Thesis, Debre Birhan University, Debre Berhan,

Ethiopia, 2022.
11. Kumar, L.; Lal, S.; Goyal, A.; Murthy, N.B. Change-proneness of object-oriented software using a combination of feature selection

techniques and ensemble learning techniques. In Proceedings of the 12th Innovations on Software Engineering Conference
(formerly known as India Software Engineering Conference), Pune, India, 14–16 February 2019; pp. 1–11.

12. Sidhu, B.K.; Singh, K.; Sharma, N. A machine learning approach to software model refactoring. Int. J. Comput. Appl. 2020, 44,
166–177. [CrossRef]

13. Al Dallal, J. Constructing models for predicting extract subclass refactoring opportunities using object-oriented quality metrics.
J. Inf. Softw. Technol. 2012, 54, 1125–1141. [CrossRef]

14. Kádár, I.; Hegedűs, P.; Ferenc, R.; Gyimóthy, T. A manually validated code refactoring dataset and its assessment regarding
software maintainability. In Proceedings of the 12th International Conference on Predictive Models and Data Analytics in
Software Engineering, Ciudad Real, Spain, 7 September 2016; pp. 1–4.

15. Kádár, I.; Hegedus, P.; Ferenc, R.; Gyimóthy, T. A code is a refactoring dataset and its assessment regarding software maintainability.
In Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER),
Osaka, Japan, 14–18 March 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 1, pp. 599–603.

16. Bashir, R.S.; Lee, S.P.; Yung, C.C.; Alam, K.A.; Ahmad, R.W. A Methodology for Impact Evaluation of Refactoring on External
Quality Attributes of a Software Design. In Proceedings of the 2017 International Conference on Frontiers of Information
Technology (FIT), Islamabad, Pakistan, 18–20 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 183–188. [CrossRef]

17. Vimaladevi, M.; Zayaraz, G. Stability Aware Software Refactoring Using Hybrid Search-Based Techniques. In Proceedings of the
2017 International Conference on Technical Advancements in Computers and Communications (ICTACC), Melmaurvathur, India,
10–11 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 32–35.

18. Krishna, Y.; Alshayeb, M. An empirical study on the effect of the order of applying software refactoring. In Proceedings of the
2016 7th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 13–14 July 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

19. Kaur, G.; Singh, B. Improving the quality of software by refactoring. In Proceedings of the 2017 International Conference
on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 185–191.

20. Malhotra, R.; Chug, A. An empirical study to assess the effects of refactoring on software maintainability. In Proceedings of the
2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), Jaipur, India, 21–24
September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 110–117. [CrossRef]

21. Desai, A.B.; Parmar, J.K. Refactoring Cost Estimation (RCE) Model for Object-Oriented System. In Proceedings of the 2016 IEEE
6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 214–218.

22. Lacerda, G.; Petrillo, F.; Pimenta, M.; Guéhéneuc, Y.G. Code smells and refactoring: A tertiary systematic review of challenges
and observations. J. Syst. Softw. 2020, 167, 110610. [CrossRef]

23. Singh, S.; Kaur, S. A systematic literature review: Refactoring for disclosing code smells in object oriented software. Ain Shams
Eng. J. 2018, 9, 2129–2151. [CrossRef]

24. Liu, H.; Liu, Y.; Xue, G.; Gao, Y. Case study on software refactoring tactics. IET Softw. 2014, 8, 1–11. [CrossRef]
25. Santos, B.M.; de Guzmán, I.G.R.; de Camargo, V.V.; Piattini, M.; Ebert, C. Software refactoring for system modernization. IEEE

Softw. 2017, 35, 62–67. [CrossRef]
26. Han, A.R.; Bae, D.H. An efficient method for assessing the impact of refactoring candidates on maintainability based on matrix

computation. In Proceedings of the 2014 21st Asia-Pacific Software Engineering Conference, Jeju, Republic of Korea, 1–4 December
2014; IEEE: Piscataway, NJ, USA, 2014; Volume 1, pp. 430–437.

27. Khlif, W.; Ben-Abdallah, H. Integrating semantics and structural information for BPMN model refactoring. In Proceedings of the
2015 IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS), Las Vegas, NV, USA, 28 June–1 July
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 656–660.

28. Arcelli, D.; Cortellessa, V.; Di Pompeo, D. Performance-Driven Software Architecture Refactoring. In Proceedings of the 2018
IEEE International Conference on Software Architecture Companion (ICSA-C), Seattle, WA, USA, 30 April–4 May 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 2–3.

http://doi.org/10.1109/TSE.2014.2331057
http://doi.org/10.1109/TSE.2013.4
http://doi.org/10.1007/978-981-19-0901-6_25
http://doi.org/10.1080/1206212X.2020.1711616
http://doi.org/10.1016/j.infsof.2012.04.004
http://doi.org/10.1109/fit.2017.00040
http://doi.org/10.1109/icacci.2016.7732033
http://doi.org/10.1016/j.jss.2020.110610
http://doi.org/10.1016/j.asej.2017.03.002
http://doi.org/10.1049/iet-sen.2012.0121
http://doi.org/10.1109/MS.2018.4321236

Appl. Sci. 2022, 12, 12217 28 of 29

29. Tao, B.; Qian, J. Refactoring concurrent java programs based on synchronization requirement analysis. In Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 29 September–3 October 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 361–370.

30. Singh, N.K.; Aït-Ameur, Y.; Mery, D. Formal ontology-driven model refactoring. In Proceedings of the 2018 23rd International
Conference on Engineering of Complex Computer Systems (ICECCS), Melbourne, Australia, 12–14 December 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 136–145.

31. Tarwani, S.; Chug, A. Sequencing of refactoring techniques by Greedy algorithm for maximizing maintainability. In Proceedings
of the 2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), Jaipur, India,
21–24 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1397–1403. [CrossRef]

32. Soares, G.; Gheyi, R.; Massoni, T. Automated behavioral testing of refactoring engines. IEEE Trans. Softw. Eng. 2012, 39, 147–162.
[CrossRef]

33. Wang, Y.; Yu, H.; Zhu, Z.; Zhang, W.; Zhao, Y. Automatic Software Refactoring via Weighted Clustering in Method-Level
Networks. IEEE Trans. Softw. Eng. 2017, 44, 202–236. [CrossRef]

34. Alves, E.L.G.; Song, M.; Massoni, T.; Machado, P.D.L.; Kim, M. Refactoring Inspection Support for Manual Refactoring Edits.
IEEE Trans. Softw. Eng. 2017, 44, 365–383. [CrossRef]

35. Shahidi, M.; Ashtiani, M.; Zakeri-Nasrabadi, M. An automated extract method refactoring approach to correct the long method
code smell. J. Syst. Softw. 2022, 187, 111221. [CrossRef]

36. Alton, N.; Batory, D. On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels. ACM Trans. Softw. Eng.
Methodol. 2022. [CrossRef]

37. Leandro, O.; Gheyi, R.; Teixeira, L.; Ribeiro, M.; Garcia, A. A Technique to Test Refactoring Detection Tools. In Proceedings of the
XXXVI Brazilian Symposium on Software Engineering, Virtual Event Brazil, 5–7 October 2022; pp. 188–197.

38. Marcos, C.; Rago, A.; Pace, J.A.D. Improving use case specifications using refactoring. IEEE Lat. Am. Trans. 2015, 13, 1135–1140.
[CrossRef]

39. Dig, D. Refactoring for Asynchronous Execution on Mobile Devices. IEEE Softw. 2015, 32, 52–61. [CrossRef]
40. Lu, H.; Wang, S.; Yue, T.; Nygård, J.F. Automated refactoring of OCL constraints with search. IEEE Trans. Softw. Eng. 2017, 45,

148–170. [CrossRef]
41. Stolee, K.T.; Elbaum, S. Identification, impact, and refactoring of smells in pipe-like web mashups. IEEE Trans. Softw. Eng. 2013,

39, 1654–1679. [CrossRef]
42. Kumar, L.; Naik, D.K.; Rath, S.K. Validating the Effectiveness of Object-Oriented Metrics for Predicting Maintainability. Procedia

Comput. Sci. 2015, 57, 798–806. [CrossRef]
43. AlOmar, E.A.; Liu, J.; Addo, K.; Mkaouer, M.W.; Newman, C.; Ouni, A.; Yu, Z. On the documentation of refactoring types. Autom.

Softw. Eng. 2022, 29, 9. [CrossRef]
44. Al Dallal, J. Predicting move method refactoring opportunities in object-oriented code. Inf. Softw. Technol. 2017, 92, 105–120.

[CrossRef]
45. Chaparro, O.; Bavota, G.; Marcus, A.; Di Penta, M. On the impact of refactoring operations on code quality metrics. In Proceedings

of the 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 29 September–3 October
2014; IEEE: Piscataway, NJ, USA, 2014; pp. 456–460.

46. Ivers, J.; Seifried, C.; Ozkaya, I. Untangling the Knot: Enabling Architecture Evolution with Search-Based Refactoring. In
Proceedings of the 2022 IEEE 19th International Conference on Software Architecture (ICSA), Honolulu, HI, USA, 12–15 March
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 101–111. [CrossRef]

47. Nyamawe, A.S. Mining commit messages to enhance software refactorings recommendation: A machine learning approach.
Mach. Learn. Appl. 2022, 9, 100316. [CrossRef]

48. Aniche, M.; Maziero, E.; Durelli, R.; Durelli, V. The effectiveness of supervised machine learning algorithms in predicting software
refactoring. IEEE Trans. Softw. Eng. 2020, 48, 1432–1450. [CrossRef]

49. Kumar, L.; Sureka, A. Application of LSSVM and SMOTE on seven open-source projects for predicting refactoring at the class
level. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, China, 4–8 December
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 90–99.

50. Kumar, L.; Satapathy, S.M.; Sureka, A. Method Level Refactoring Prediction on Five Open Source Java Projects using Machine
Learning Techniques. In Proceedings of the India Software Engineering Conference, Bangalore, India, 18–20 February 2015.

51. Panigrahi, R.; Kuanar, S.K.; Kumar, L. An Empirical Study for Method-Level Refactoring Prediction by Ensemble Technique and
SMOTE to Improve Its Efficiency. Int. J. Open Source Softw. Process. 2021, 12, 19–36. [CrossRef]

52. Data Set for Refactoring Prediction. Available online: https://github.com/rasmitapanigrahi/data-set (accessed on 20 March 2020).
53. Kim, M.; Gee, M.; Loh, A.; Rachatasumrit, N. Ref-finder: A refactoring reconstruction tool based on logic query templates. In

Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Software Engineering Foundations, Santa Fe, NM,
USA, 7–11 November 2010; pp. 371–372.

54. Tool for Extracting Source Code Metrics. Available online: https://www.sourcemeter.com/ (accessed on 20 March 2020).
55. Alsolai, H.; Roper, M. The Impact of Ensemble Techniques on Software Maintenance Change Prediction: An Empirical Study.

Appl. Sci. 2022, 12, 5234. [CrossRef]

http://doi.org/10.1109/icacci.2016.7732243
http://doi.org/10.1109/TSE.2012.19
http://doi.org/10.1109/TSE.2017.2679752
http://doi.org/10.1109/TSE.2017.2679742
http://doi.org/10.1016/j.jss.2022.111221
http://doi.org/10.1145/3549541
http://doi.org/10.1109/TLA.2015.7106367
http://doi.org/10.1109/MS.2015.133
http://doi.org/10.1109/TSE.2017.2774829
http://doi.org/10.1109/TSE.2013.42
http://doi.org/10.1016/j.procs.2015.07.479
http://doi.org/10.1007/s10515-021-00314-w
http://doi.org/10.1016/j.infsof.2017.07.013
http://doi.org/10.1109/icsa53651.2022.00018
http://doi.org/10.1016/j.mlwa.2022.100316
http://doi.org/10.1109/TSE.2020.3021736
http://doi.org/10.4018/IJOSSP.287612
https://github.com/rasmitapanigrahi/data-set
https://www.sourcemeter.com/
http://doi.org/10.3390/app12105234

Appl. Sci. 2022, 12, 12217 29 of 29

56. Murugesh, S.; Jaya, A. An integrated approach towards automated software requirements elicitation from unstructured docu-
ments. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3763–3773. [CrossRef]

57. Du, D.; Jia, X.; Hao, C. A new least squares support vector machines ensemble model for aero engine performance parameter
chaotic Prediction. Math. Probl. Eng. 2016, 2016, 4615903. [CrossRef]

58. Pan, W.; Ming, H.; Yang, Z.; Wang, T. Comments on “Using k-core Decomposition on Class Dependency Networks to Improve
Bug Prediction Model’s Practical Performance”. IEEE Trans. Softw. Eng. 2022, 1. [CrossRef]

59. Sagar, P.S.; AlOmar, E.A.; Mkaouer, M.W.; Ouni, A.; Newman, C.D. Comparing Commit Messages and Source Code Metrics for
the Prediction Refactoring Activities. Algorithms 2021, 14, 289. [CrossRef]

60. Kumar, L.; Satapathy, S.M.; Krishna, A. Applying smote and lssvm with various kernels for predicting refactoring at method
level. In Proceedings of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December
2018; Springer: Cham, Switzerland, 2018; pp. 150–161.

61. Patnaik, A.; Panigrahi, R.; Padhy, N. Prediction Of Accuracy On Open Source Java Projects Using Class Level Refactoring. In
Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India,
13–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

62. Panigrahi, R.; Kuanar, S.K.; Kumar, L. Application of Naïve Bayes classifiers for refactoring Prediction at the method level. In
Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India,
13–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

63. Panigrahi, R.; Kunaar, S.; Kumar, L. Method Level Refactoring Prediction by Weighted-SVM Machine Learning Classifier. In
Mobile Application Development: Practice and Experience; Springer: Bhubaneswaar, India, 2023.

64. Akour, M.; Alenezi, M.; Alsghaier, H. Software Refactoring Prediction Using SVM and Optimization Algorithms. Processes 2022,
10, 1611. [CrossRef]

65. Gerling, J. Machine Learning for Software Refactoring: A Large-Scale Empirical Study. Master’s Thesis, Delft University of
Technology, Delft, The Netherlands, 2020.

66. Hegedus, P.; Kádár, I.; Ferenc, R.; Gyimóthy, T. Empirical evaluation of software maintainability based on a manually validated
refactoring dataset. Inf. Softw. Technol. 2018, 95, 313–327. [CrossRef]

67. Catolino, G.; Ferrucci, F. An extensive evaluation of ensemble techniques for software change prediction. J. Softw. Evol. Process
2019, 31, e2156. [CrossRef]

68. Alenezi, M.; Akour, M.; Al Qasem, O. Harnessing deep learning algorithms to predict software refactoring. TELKOMNIKA
Telecommun. Comput. Electron. Control. 2020, 18, 2977–2982. [CrossRef]

http://doi.org/10.1007/s12652-019-01667-7
http://doi.org/10.1155/2016/4615903
http://doi.org/10.1109/TSE.2022.3140599
http://doi.org/10.3390/a14100289
http://doi.org/10.1109/iccsea49143.2020.9132886
http://doi.org/10.1109/iccsea49143.2020.9132849
http://doi.org/10.3390/pr10081611
http://doi.org/10.1016/j.infsof.2017.11.012
http://doi.org/10.1002/smr.2156
http://doi.org/10.12928/telkomnika.v18i6.16743

	Introduction
	Literature Survey
	Research Methodology
	System Model
	Refactoring Data Preparation
	Multi-Phased Feature Selection
	Sampling
	Heterogeneous Ensemble Structure-Based Class-Level Refactoring Prediction

	Results and Discussion
	Comparative Analysis
	Conclusions and Future Work
	References

