
 USING A COMBINATION OF MEASUREMENT TOOLS TO EXTRACT

METRICS FROM OPEN SOURCE PROJECTS

Normi Sham Awang Abu Bakar, Clive Boughton

Department of Computer Science

Australian National University

Australia

normi@cs.anu.edu.au, clive.boughton@anu.edu.au

ABSTRACT

Software measurement can play a major role in ensuring

the quality and reliability of software products. The

measurement activities require appropriate tools to collect

relevant metric data. Currently, there are several such

tools available for software measurement. The main

objective of this paper is to provide some guidelines in

using a combination of multiple measurement tools

especially for products built using object-oriented

techniques and languages. In this paper, we highlight

three tools for collecting metric data, in our case from

several Java-based open source projects. Our research is

currently based on the work of Card and Glass, who argue

that design complexity measures (data complexity and

structural complexity) are indicators/predictors of

procedural/cyclomatic complexity (decision counts) and

errors (discovered from system tests). Their work was

centered on structured design and our work is with object-

oriented designs and the metrics we use parallel those of

Card and Glass, being, Henry and Kafura’s Information

Flow Metrics, McCabe’s Cyclomatic Complexity, and

Chidamber and Kemerer Object-oriented Metrics.

KEY WORDS
Complexity, CBO, fanout, parameters, post-delivery

defects

1. Introduction

 One of the most important objectives of software

engineering is to improve the quality of software

products. The quality of software can be defined in

different ways but one of the most common definitions is

the number of defects that arise in the final product [1], be

it functional defects or programming defects, that can

cause problems to users. Such ‘quality’ measures should

be determined as early as possible during development,

by using predictors of ultimate quality.

 To establish measures that can predict quality (in this

case post-delivery defects), it is important to undertake

careful data collection [1]. Data collection is a

challenging task especially when done across a diverse set

of projects. Thus, the data collection process has to be

done using a systematic plan to ensure that measures are

defined unambiguously, that collection is consistent and

complete, and that data integrity is protected.

 This paper presents three available tools that can be

used to collect metrics data from software products. We

are currently using these tools to extract metrics data from

several open source projects which are written in Java.

The tools are: Resource Standard Metrics (RSM), JStyle

and Chidamber and Kemerer Java Metrics (CKJM). The

details of each tool will be discussed in Section 3 of this

paper.

 The open source systems that we are investigating

have been downloaded from SourceForge.net. These

systems have been divided into four different categories

based on functionality, as well as the success of the

systems in terms of numbers of downloads, development

status and activity percentile. A few of these systems are

listed in the most active project list in SourceForge.net

[2].

2. Background

 The open source software development community has

grown enormously over the past few years. Open source

systems are commonly accepted and successfully

adopted/adapted into many organizations, and some of

these systems have been used for mission critical

purposes [1]. Therefore, it is very important to not only

assess and validate the reliability and performance of

these systems to help ensure that they fulfill their purpose,

but also to provide developers with simple measures that

will help them determine quality.

 A study by Zhou and Davis [3] demonstrated that

open source projects show similar reliability growth

patterns to that of proprietary software projects. This

potentially means that even though open source

development methodologies are usually seen as different

from the proprietary software development

methodologies, they have similar properties that can be

used as indicators of software quality. Paulson et al. [4]

have conducted a study to compare several aspects of

system development between open source and closed-

source projects. They have found that creativity is more

widespread in open source projects and defects are found

and fixed more rapidly compared to closed-source

projects. Another study conducted by Mockus et al. [5]

632-042 130

debbie
New Stamp

investigated the claim that open source style software

development has the capability to complete successfully

and in most cases, even displace traditional commercial

development methods. They had looked into the aspects

of developer participation, core team size, code

ownership, productivity, defect density and problem

resolution intervals in order to understand the methods

used for software development in open source projects. In

their paper, Refenc et al. [6] discuss a framework called

“Colombus” which they used to calculate the object-

oriented metrics for illustrating how fault-proneness

detection from the Mozilla open source web and e-mail

suite can be done.

 Other researchers [7], [8], [9], [10], have discussed the

usage of tools to support software measurement programs.

In their work, Tian et al. [10] used several tools to carry

out their software measurement, analysis and

improvement activities. For data gathering, they used:

IDSS, CMVC, TestLog and SlaveDriver, and for analysis

and presentation, they used S-PLUS. Kempkens et al.[8]

used several tools, such as COSMOS, MOODKIT and

WISE to automate metrics data collection. In their paper,

AlGhamdi et al. [7] presented three existing tools:

Brook’s and Buell’s tool, a “Tool” for analyzing C++

code (TAC++), and an object-oriented metrics gathering

tool (OOMetDaGa) and compared them with a tool which

was developed by themselves.

 Whilst there has been much work in measuring

various aspects of open source software, as with

proprietary software there are few measurements done

relating design quality to defects of any sort – especially

for the purpose of predicting defect numbers or severity.

 Our current work is mainly based on previous work

done by Card and Glass [11], who studied eight systems

written in FORTRAN (RATFOR) in the Software

Engineering Laboratory, and sponsored by NASA

Goddard Space Flight Center (GSFC). They

hypothesized that the complexity of a system can be

broken down into 3 main components, data and structural

complexity (established as part of design) and procedural

complexity (established as part of implemenetation). They

then found that the more complex the design of a

particular system, the more errors it possessed,

independent of size of system.

3. Measurement Tools

3.1 Chidamber & Kemerer Java Metrics (CKJM)

 The program “ckjm” calculates Chidamber and

Kemerer object-oriented metrics by processing the byte

code of compiled Java files. The program calculates the

following six metrics proposed by Chidamber and

Kemerer, for each class:

• WMC: Weighted methods per class

• DIT: Depth of Inheritance Tree

• NOC: Number of Children

• CBO: Coupling between object classes

• RFC: Response for a Class

• LCOM: Lack of cohesion in methods

• Ca: Afferent couplings

• NPM: Number of public methods

 “ckjm” [12] is freely available as open source

software and the current version is 1.8 (at the time of

writing this paper).

3.2 JStyle

 JStyle [13] is another tool for collecting software

metrics including the Chidamber and Kemerer object-

oriented (OO) metrics. This tool supports the

measurement of Java software and has four levels of

object-oriented metrics: project level, module level, class

level and method level. In this paper, we are interested in

looking at metrics at the class level as listed below:

• Depth of Inheritance (DIT)

• Number of Children (NOC)

• Response For Class (RFC)

• Lack of Cohesion in Methods (LCOM)

Chidamber-Kemerer

• Lack of Cohesion in Methods (LCOM) Li-Henry

• Lack of Cohesion in Methods (LCOM) Henderson-

Sellers

• Fan-in (FI)

• Fan-out (FO)

• Intra-Package Fan-In (PFI)

• Intra-Package Fan-out (PFO)

• Inter-Package Fan-in (IFI)

• Inter-Package Fan-out (IFO)

3.3 Resource Standard Metrics (RSM)

 The third tool, Resource Standard Metrics [14], is a

source code metrics and quality analysis tool for systems

written in C, ANSI C++, C# and Java source code across

operating systems. This tool can provide measurements at

several levels of a system, for example, project level,

package level, file level, class level, interface level and

method level.

 In this paper, we highlight the (RSM) metrics for Java

source code, as listed below:

• Total number of classes

• Inheritance Tree

• Number of Base Classes

• Number of Derived Classes

• Maximum and Average Inheritance Depth

• Maximum and Average Number of Child Classes

• Public, private, protected data attributes

• Public, private, protected methods

• LOC Lines of Code

• eLOC (Effective LOC)

• lLOC (Logical Statements LOC)

• Number of Input Parameters

• Number of Return Points

• Interface Complexity (Parameters + Returns)

131

• Cyclomatic Complexity Logical Branching

• Class Complexity (Interface + Cyclomatic)

• Total Quality Profile

Table 1 is a summary of the main characteristics of the

three tools that we have used to produce the essential

metrics of interest in our work.

Table 1. Tools Characteristics

Tools Comparison criteria

CKJM JStyle RSM

Supported language Java Java C, ANSI C++,

C#, Java

Number of supported

metrics

8 66 174

 4. Metrics Collection

 The measurements we use in our work are obtained

from the combination of tools described above. The

software base to which we apply these tools consists of 36

open source projects from www.sourceforge.net and all

projects chosen are written in Java. The reason we chose

to study open source systems is that a random choice can

easily be made for the categories of projects of interest.

Also it is relatively easy to identify an appropriate set of

projects similarly sized (or not) that are actively supported

and can provide adequate information regarding the

characteristics we wish to examine/evaluate.

 The work reported in this paper is based on the work of

Card and Glass to determine whether there are similar

correlations that they report concerning the relationship

between design quality and errors for different styles of

language. We are interested in investigating whether there

is a general correlation between post-delivery defects and

system design complexity, by studying object-oriented

measures relating to data, structural and procedural

complexity and comparing them with discovered, post-

delivery defects.

 According to Card and Glass [11], system complexity

metrics are based on the structured design modularity

principles of coupling and cohesion. It uses both

intramodule and intermodule complexity to arrive at a

system complexity metric, for which the initial equation

is:

Ct= St + Dt

where Ct = system complexity

 St = structural (intermodule) complexity

 Dt = data (intramodule) complexity

 In this paper, we want to show the typical results of

these complexity analyses for ten open source projects

namely: DataCrow (Project 1), Mars (Project 2),

HTMLParser (Project 3), SCAM (Project 4), Saxon

(Project 5), SchemaSpy (Project 6), Eclipse Checkstyle

(Project 7), JasperReports (Project 8), Freemind (Project

9) and Cewolf (Project 10). The metrics that are

appropriate to our work are Fanout (FO) and Coupling

Between Object Classes (CBO) to represent structural

complexity; Average Cyclomatic Complexity to represent

procedural complexity; and Average Number of

Parameters to represent data complexity.

 Average Fanout for each of the ten projects are shown

in Figure 1. According to Henry and Kafura [15], Fanout

is a number of local flows out of a module plus the

number of data structures that are used as output. They

stated that modules with low Fanout have low

complexity. In our work, we investigated Fanout of

classes and tried to see the correlation between Fanout

(structural complexity) of the systems with post-delivery

defects. Figure 1 shows that three projects: Mars (Project

2), SchemaSpy (Project 5) and Saxon (Project 6) exhibit

high Fanout values, which potentially means that there

has been inadequate factoring performed in the project.

 In Figure 2, the Average Cyclomatic Complexity

(procedural complexity) of each of the ten systems are

presented. Cyclomatic Complexity is the measure of the

number of control flows within a module [16]. According

to McCabe, the greater the number of paths through a

module, the higher the complexity. McCabe has

suggested that, on the basis of empirical evidence, when

Average Cyclomatic Complexity per module of a project

exceeds 10, the project may be problematic [16]. In our

findings, only two projects: DataCrow (Project 1) and

Cewolf (Project 10) have Average Cyclomatic

Complexity per module less than 10. Hence, according to

McCabe, the other eight projects need to be investigated

further to find out the reasons for the high values of

Average Cyclomatic Complexity. In this work, the

formula for Average Cyclomatic Complexity is given as:

Average Cyclomatic Complexity = Total (System)

Cyclomatic Complexity/Number of Classes

 Figure 3 shows the Average Number of Parameters

(Data Complexity) per class for each of the ten projects.

The internal complexity (Cyclomatic Complexity) of a

module represents the amount of work it must perform.

Card and Glass showed that Data Complexity (Number of

Parameters) was a predictor of Procedural Complexity

(Cyclomatic Complexity). Figure 4 illustrates that such a

relationship holds for the ten Java projects we studied.

Figure 1. Average Fanout

10.7

1212.3

10

14.8

17.4

7.5

11.3

15

11.6

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

Projects

A
v
e

ra
g

e
 F

a
n

o
u

t

132

Figure 2. Average Cyclomatic Complexity

7.9

21.7

18.8

10.9

21.2

26.7

12.2

23.3

15.8

9.2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 2 3 4 5 6 7 8 9 10

Projects

A
v
e
ra

g
e
 C

y
c
lo

m
a
ti

c
 C

o
m

p
le

x
it

y

Figure 3. Average Parameters

5

9.2
8.4

4.7

10.8

9.3

5.2

8.1

5

3.7

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Projects

A
v
e
ra

g
e
 P

a
ra

m
e
te

rs

Figure 4. Procedural Complexity vs Data Complexity

Average Cyclomatic Complexity (Procedural Complexity) vs Average Parameters (Data

Complexity)

y = 2.30x + 0.80

R
2
 = 0.77

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 2 4 6 8 10 12

Average Parameters (Data Complexity)

A
v

e
ra

g
e

 C
y
c

lo
m

a
ti

c
 C

o
m

p
le

x
it

y

(P
ro

c
e

d
u

ra
l

C
o

m
p

le
x

it
y

)

 In Figure 4, the linear fit for the ten systems is

represented by the equation: Decisions per Class = 2.25 x

D + 1.03. This means that for each unit of data

complexity (number of parameters), 2.25 decisions must

be made to implement the required function and in

addition, the average class includes a base of 1 decision

(perhaps) not directly related to the data function of the

class. This relationship closely aligns with the findings of

Card and Glass [11], so that if a design is created that

contains little in the way of detail for the internals of each

class (in this case for Java) but does show expected

parameters for each class (indicating data complexity), the

likely degree of procedural complexity can be predicted

and additionally the potential effort required to implement

each class. Such a measure can help to produce an

effective design before too much detail is added.

Figure 5. Executable Statements vs Data Complexity

Average Executable Statements vs Average Parameters (Data Complexity)

y = 9.44x + 8.25

R2 = 0.64

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

Average Parameters (Data Complexity)

A
v
e
ra

g
e
 E

x
e
c
u

ta
b

le
 S

ta
te

m
e
n

ts

Figure 5 demonstrates that data complexity effectively

predicts the size of a class in terms of executable

statements. The linear fit for the ten systems is:

Executable Statements = 9.44 x D + 8.25, which means

that an increase of one unit of data complexity increases

program size by around nine executable statements. The

correlations between these two variables is good (R
2
 =

0.64). This result is consistent with the findings of Card

and Glass [11] for RATFOR (4.1 D + 24.5), who show

that data complexity is a good predictor of subroutine

size. This result also provides insight into an estimate of

effort to create each module/class.

5. Tools Comparison

In this paper, we compare the results of metrics of

particular interest to us as produced from three different

tools. Our original intention in using the three tools was

based on a belief that the three particular metrics in which

we were interested could easily be verified as accurate

provided there existed some direct relationship between

the possible varying ways in which two or more of the

tools might produce the metrics. For some other metrics,

such as Number of Classes, the three tools have produced

the same results. However, for the metrics of interest to

us that relate to data complexity, procedural complexity

and structural complexity as defined by Card and Glass

[11], it is difficult to obtain any such verification.

 In order to measure the metrics relevant to our work,

we need to use the three tools and combine the results to

arrive at substantial conclusions empirically. Because we

are analyzing systems constructed using object-oriented

languages, one of the key metrics is Coupling Between

Objects (CBO) which we believe has parallels to Card

and Glass’s Fanout. Only one tool (CJKM) can provide

this metric. However Jstyle does purport to provide

actual Fanout.

 Since we are measuring object-oriented systems, we

thought CBO could be used as a measure of structural

complexity. It was also thought that we could validate the

CBO metrics with the actual Fanout obtained from JStyle.

The plot of Average CBO and Average Fanout is shown

in Figure 6 below. From the plot, the linear fit for the

systems is CBO = 0.31 x Fanout + 3.18 which means that

CBO is about a quarter of the Fanout. If Fanout is zero,

we obtain a constant CBO of (approx.) 3 which indicates

that CBO is more complex than Fanout because it

includes more variables like method calls, inheritance,

arguments, return types and exceptions, while Fanout is a

simple measure of (use) dependency between

modules/classes. We had expected to see a close

relationship between CBO and Fanout, but we found that

the correlation is quite weak (R
2
=0.1) and thus needs

further investigation.

 However, when we plot Total CBO against Total

Fanout for the projects, we find that the correlation

between the two variables is very strong (R
2
 = 0.97) and

the linear fit is CBO = 0.64 Fanout. This is shown in

Figure 7 below and we believe that the poor correlation

133

that was shown in Figure 6 might be influenced by other

properties of the individual systems, i.e. high use of

inheritance, amount of interface code etc. The degree to

which such properties influence the correlation between

CBO and Fanout is still being studied.

Figure 6. Average CBO vs Average Fanout

Average CBO vs Average Fanout

y = 0.31x + 3.18

R2 = 0.10

0

2

4

6

8

10

12

14

7 9 11 13 15 17 19

Average Fanout

A
v
e
ra

g
e
 C

B
O

Figure 7. Total CBO vs Total Fanout

CBO vs Fanout

y = 0.64x

R
2
 = 0.97

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000 14000 16000

Total Fanout

T
o

ta
l
C

B
O

Another interesting finding is that System Complexity

seems to be a good predictor of Total Post-Delivery

Defects in the systems. This is depicted in Figure 8 below.

The linear fit of these systems is: Total Defects = 33.85

System Complexity – 315.09. We have found that the

correlation between these two variables is good (R
2
=0.64)

and tends to support the hypothesis that System

Complexity can predict the Total Post-Delivery Defects in

object-oriented systems. This relationship corresponds to

the type of relationship found by Card and Glass [11]

(R
2
=0.83) and Error Rate = 0.4 Complexity – 5.2 (for pre-

delivery defects).

 Figure 9 demonstrates that unlike Card and Glass’s

results, Average Class Size may have some effect on

Defect Rate, as shown by the correlation (R
2
 = 0.51) for

the parabola (0.02x
2 –

2.71x + 95.19). From the plot in

Figure 9, it seems that smaller systems have higher defect

rates than larger systems. As the system size rises,

Defects/KLOC drop gradually before rising again,

indicating that there maybe some optimal class size for

lowest defect rates.

Figure 8. System Complexity vs Total Defects

System Complexity vs Total Defects

y = 33.85x - 315.09

R
2
 = 0.64

0

100

200

300

400

500

600

7 9 11 13 15 17 19 21 23

System Complexity

T
o

ta
l

D
e

fe
c

ts

DataCrow

(19.7K)

Cewolf

(2.3K)

SCAM(7.3K)

Mars(10K)

HTMLParser(14.4K)

JasperReports(58.2K)

Eclipse(8.6K)

Freemind(68.4K)

SchemaSpy(4.2K)

Saxon(78K)

Figure 9. Average Class Size vs Defects/KLOC

Average Class Size vs Defects/KLOC

y = 0.02x
2
 - 2.71x + 95.19

R
2
 = 0.51

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140

Average Class Size

D
e
fe

c
ts

/K
L

O
C

6. Tools Validation

 Using a combination of multiple tools to extract metrics

from software projects has its own challenges, especially

to ensure that data collected is correct across all tools.

This section will discuss the process of validating the data

collected using the three tools: CKJM, JStyle and RSM.

1) Validating similar metrics

 Since some tools can produce similar metrics, the

first step is to check whether such metrics obtained

by each tool have the same values. For example all

tools can produce Number of Classes, therefore, it is

important to validate that all tools produce the same

results for this measure. The same process goes for

other metrics that are common between the tools.

2) Further analysis

 We have managed to obtain similar results for

metrics such as Number of Classes, Number of

Methods and Number of Parameters, so we are

confident that the tools have followed the same

algorithm or process for at least three metrics.

However, this is not the case for Cyclomatic

Complexity. There are slight differences in the results

for Cyclomatic Complexity produced by RSM and

JStyle. After a thorough checking process, we

managed to confirm that the results produced by

JStyle adhere to the definitions given by McCabe

[16], whereas the ones produced by RSM have

additional properties that were not included in

McCabe’s definition. However, after removing the

effects of the additional properties, the results were

the same.

134

3) Other properties

We have explored the relationship between CBO and

Fanout to see whether CBO can represent structural

complexity in object-oriented systems as opposed to

Fanout (typically used in structured design systems).

Referring to Figure 6, the correlation between CBO

and Fanout seems quite poor (R
2
 = 0.1) and to find

explanations to this unexpected result, we have

decided to do further investigations on other

properties of the systems under study. Currently, we

are undertaking further analysis on system properties

such as comparing CBO and Fanout for different

types of systems; frequency graphs of CBO and

Fanout distribution across a system; the proportion of

‘inheritance’ to ‘use’ relationships; the proportion of

GUI and other interface code; and several other

properties. It is hoped that once the analysis of these

properties is completed, we will have a better

understanding of the validity of using CBO and

Fanout depending on system properties.

7. Conclusion and Further Work

 The three tools (CJKM, RSM and JStyle) can be used to

collect a variety of metrics to suit the needs of different

measurement objectives. In our work, we used the tools to

gather data from several open source projects and we

found that all tools have their own strengths and

weaknesses but no one tool produces all the metrics that

we need in our work. In other words, although these tools

can collect different sets of metrics, they must be used to

complement each other in producing the particular

metrics required for our work.

 The main contribution of this paper is to provide

insights in using a combination of tools to extract metrics

from software systems and the processes needed to ensure

the results obtained from (at least) these tools are valid

and trustworthy. Not only it is possible to encounter

different ‘implementations’ of metrics among tools, but

also there can be apparent inconsistency confounding

and/or unexpected relationships among what seem to be

similar metrics.

 Further work is needed to investigate the relationship

between CBO and Fanout to get a better understanding of

the two metrics. We will continue to analyze the metrics

obtained through these tools and explore further the

properties of the projects under study. Moreover, in order

to determine the consistency of our results further,

snapshots of infrequent system releases is necessary. We

will also look into the possibility of using cumulative

defects of the systems as a measure of system defects and

not only consider the defects reported for a particular

release. In addition, the relationship between defect rate

and average class size will be investigated further.

References

[1] N. E. Fenton and S. L. Pfleeger, Software metrics: A

rigorous and practical approach (Boston, MA: PWS Publishing

Company, 1997).

[2] SourceForge: www.sourceforge.net

[3] Y. Zhou and J. Davis, Open source software reliability

model: An empirical approach, In: Proceedings of Open Source

Application Spaces: Fifth Workshop on Open Source Software

Engineering (5-WOSSE), St. Louis, MO, USA, 2005.

[4] J. W. Paulson, G. Succi and A. Eberlein, An empirical study

of open-source and closed-source software products, IEEE

Transaction on Software Engineering, 30(4), April 2004, 246-

256

[5] A. Mockus, R.T. Fielding and J. D. Herbsleb, Two case

studies of open source software development: Apache and

Mozilla, ACM Transaction on Software Engineering and

Methodology, 11(3), July 2002, 309-346

[6] R. Ferenc, I.Siket and T. Gyimothi, Extracting facts from

open source software, In Proceedings, 20th International

Conference on Software Maintenance (ICSM 2004), Chicago

Illinois, USA, 2004

[7] J. AlGhamdi, M. Elish and M. Ahmed, A tool for

measuring inheritance coupling in object-oriented systems,

Information Sciences, 140(2002), 2002, 217-227.

[8] R. Kempkens, P. Rosch, L. Scott and J. Zettel,

Instrumenting measurement programs with tools, LNCS 1840,

Springer-Verlag Berlin Heidelberg 2000, 2000, 353-375

[9] F. G. Wilkie and T.J. Harmer, Tool support for measuring

complexity in heterogeneous object-oriented software, In

Proceedings, Proceedings of International Conference on

Software Maintenance (ICSM’02) , 2002

[10] J. Tian, J. Troster and J. Palma, Tool support for software

measurement, analysis and improvement, Journal of Systems

Software, 39, 1997, 165-178

[11] D. N. Card and R. L. Glass, Measuring software design

quality (New Jersey, USA: Prentice Hall, 1990).

[12] CKJM: www.spinellis.gr/sw/ckjm/

[13] JStyle: www.mmsindia.com/jstyle.html

[14] RSM: www.msquaredtechnologies.com/

[15] D. G. Kafura and S. M. Henry, Software quality metrics

based on interconnectivity, Journal of Systems and Software, 3

(1982), 1982, 121-131.

[16] T. J. McCabe, A complexity measure, IEEE Transactions

on Software Engineering, 2(4), December 1976, 308-320

135

