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ABSTRACT 

Software measurement can play a major role in ensuring 

the quality and reliability of software products. The 

measurement activities require appropriate tools to collect 

relevant metric data. Currently, there are several such 

tools available for software measurement. The main 

objective of this paper is to provide some guidelines in 

using a combination of multiple measurement tools 

especially for products built using object-oriented 

techniques and languages. In this paper, we highlight 

three tools for collecting metric data, in our case from 

several Java-based open source projects. Our research is 

currently based on the work of Card and Glass, who argue 

that design complexity measures (data complexity and 

structural complexity) are indicators/predictors of 

procedural/cyclomatic complexity (decision counts) and 

errors (discovered from system tests).  Their work was 

centered on structured design and our work is with object-

oriented designs and the metrics we use parallel those of 

Card and Glass, being, Henry and Kafura’s Information 

Flow Metrics, McCabe’s Cyclomatic Complexity, and 

Chidamber and Kemerer Object-oriented Metrics.  
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1. Introduction 

 
     One of the most important objectives of software 

engineering is to improve the quality of software 

products. The quality of software can be defined in 

different ways but one of the most common definitions is 

the number of defects that arise in the final product [1], be 

it functional defects or programming defects, that can 

cause problems to users. Such ‘quality’ measures should 

be determined as early as possible during development, 

by using predictors of ultimate quality. 

     To establish measures that can predict quality (in this 

case post-delivery defects), it is important to undertake 

careful data collection [1]. Data collection is a 

challenging task especially when done across a diverse set 

of projects. Thus, the data collection process has to be 

done using a systematic plan to ensure that measures are 

defined unambiguously, that collection is consistent and 

complete, and that data integrity is protected. 

      This paper presents three available tools that can be 

used to collect metrics data from software products. We 

are currently using these tools to extract metrics data from 

several open source projects which are written in Java. 

The tools are: Resource Standard Metrics (RSM), JStyle 

and Chidamber and Kemerer Java Metrics (CKJM). The 

details of each tool will be discussed in Section 3 of this 

paper. 

      The open source systems that we are investigating 

have been downloaded from SourceForge.net. These 

systems have been divided into four different categories 

based on functionality, as well as the success of the 

systems in terms of numbers of downloads, development 

status and activity percentile.  A few of these systems are 

listed in the most active project list in SourceForge.net 

[2].   

 

2. Background 

 
 The open source software development community has 

grown enormously over the past few years. Open source 

systems are commonly accepted and successfully 

adopted/adapted into many organizations, and some of 

these systems have been used for mission critical 

purposes [1].    Therefore, it is very important to not only 

assess and validate the reliability and performance of 

these systems to help ensure that they fulfill their purpose, 

but also to provide developers with simple measures that 

will help them determine quality.  

      A study by Zhou and Davis [3] demonstrated that 

open source projects show similar reliability growth 

patterns to that of proprietary software projects.  This 

potentially means that even though open source 

development methodologies are usually seen as different 

from the proprietary software development 

methodologies, they have similar properties that can be 

used as indicators of software quality. Paulson et al. [4] 

have conducted a study to compare several aspects of 

system development between open source and closed-

source projects. They have found that creativity is more 

widespread in open source projects and defects are found 

and fixed more rapidly compared to closed-source 

projects. Another study conducted by Mockus et al. [5] 

632-042 130

debbie
New Stamp



investigated the claim that open source style software 

development has the capability to complete successfully 

and in most cases, even displace traditional commercial 

development methods. They had looked into the aspects 

of developer participation, core team size, code 

ownership, productivity, defect density and problem 

resolution intervals in order to understand the methods 

used for software development in open source projects. In 

their paper, Refenc et al. [6] discuss a framework called 

“Colombus” which they used to calculate the object-

oriented metrics for illustrating how fault-proneness 

detection from the Mozilla open source web and e-mail 

suite can be done. 

      Other researchers [7], [8], [9], [10], have discussed the 

usage of tools to support software measurement programs. 

In their work, Tian et al. [10] used several tools to carry 

out their software measurement, analysis and 

improvement activities. For data gathering, they used: 

IDSS, CMVC, TestLog and SlaveDriver, and for analysis 

and presentation, they used S-PLUS. Kempkens et al.[8] 

used several tools, such as COSMOS, MOODKIT and 

WISE to automate metrics data collection. In their paper, 

AlGhamdi et al. [7] presented three existing tools: 

Brook’s and Buell’s tool, a “Tool” for analyzing C++ 

code (TAC++), and an object-oriented metrics gathering 

tool (OOMetDaGa) and compared them with a tool which 

was developed by themselves. 

      Whilst there has been much work in measuring 

various aspects of open source software, as with 

proprietary software there are few measurements done 

relating design quality to defects of any sort – especially 

for the purpose of predicting defect numbers or severity. 

      Our current work is mainly based on previous work 

done by Card and Glass [11], who studied eight systems 

written in FORTRAN (RATFOR) in the Software 

Engineering Laboratory, and sponsored by NASA 

Goddard Space Flight Center (GSFC).  They 

hypothesized that the complexity of a system can be 

broken down into 3 main components, data and structural 

complexity (established as part of design) and procedural 

complexity (established as part of implemenetation). They 

then found that the more complex the design of a 

particular system, the more errors it possessed, 

independent of size of system. 

 

3. Measurement Tools 

 
3.1 Chidamber & Kemerer Java Metrics (CKJM) 

 
     The program “ckjm” calculates Chidamber and 

Kemerer object-oriented metrics by processing the byte 

code of compiled Java files. The program calculates the 

following six metrics proposed by Chidamber and 

Kemerer, for each class: 

• WMC: Weighted methods per class 

• DIT: Depth of Inheritance Tree 

• NOC: Number of Children 

• CBO: Coupling between object classes 

• RFC: Response for a Class 

• LCOM: Lack of cohesion in methods 

• Ca: Afferent couplings 

• NPM: Number of public methods 

      “ckjm” [12] is freely available as open source 

software and the current version is 1.8 (at the time of 

writing this paper).  

 
3.2 JStyle 

 
      JStyle [13] is another tool for collecting software 

metrics including the Chidamber and Kemerer object-

oriented (OO) metrics. This tool supports the 

measurement of Java software and has four levels of 

object-oriented metrics: project level, module level, class 

level and method level. In this paper, we are interested in 

looking at metrics at the class level as listed below: 

• Depth of Inheritance (DIT) 

• Number of Children (NOC) 

• Response For Class (RFC) 

• Lack of Cohesion in Methods (LCOM) 

Chidamber-Kemerer 

• Lack of Cohesion in Methods (LCOM) Li-Henry 

• Lack of Cohesion in Methods (LCOM) Henderson-

Sellers 

• Fan-in (FI) 

• Fan-out (FO) 

• Intra-Package Fan-In (PFI) 

• Intra-Package Fan-out (PFO) 

• Inter-Package Fan-in (IFI) 

• Inter-Package Fan-out (IFO) 

 
3.3 Resource Standard Metrics (RSM) 

 
     The third tool, Resource Standard Metrics [14], is a 

source code metrics and quality analysis tool for systems 

written in C, ANSI C++, C# and Java source code across 

operating systems. This tool can provide measurements at 

several levels of a system, for example, project level, 

package level, file level, class level, interface level and 

method level. 

     In this paper, we highlight the (RSM) metrics for Java 

source code, as listed below: 

• Total number of classes 

• Inheritance Tree 

• Number of Base Classes 

• Number of Derived Classes 

• Maximum and Average Inheritance Depth 

• Maximum and Average Number of Child Classes 

• Public, private, protected data attributes 

• Public, private, protected methods 

• LOC Lines of Code 

• eLOC (Effective LOC) 

• lLOC (Logical Statements LOC) 

• Number of Input Parameters 

• Number of Return Points 

• Interface Complexity (Parameters + Returns) 
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• Cyclomatic Complexity Logical Branching 

• Class Complexity (Interface + Cyclomatic) 

• Total Quality Profile  

 

Table 1 is a summary of the main characteristics of the 

three tools that we have used to produce the essential 

metrics of interest in our work.  

 
Table 1. Tools Characteristics 

 
Tools Comparison criteria 

CKJM JStyle RSM 

Supported language Java Java C, ANSI C++, 

C#, Java 

Number of supported 

metrics 

8 66 174 

 

 4. Metrics Collection 

     
     The measurements we use in our work are obtained 

from the combination of tools described above. The 

software base to which we apply these tools consists of 36 

open source projects from www.sourceforge.net and all 

projects chosen are written in Java. The reason we chose 

to study open source systems is that a random choice can 

easily be made for the categories of projects of interest.  

Also it is relatively easy to identify an appropriate set of 

projects similarly sized (or not) that are actively supported 

and can provide adequate information regarding the 

characteristics we wish to examine/evaluate.  

    The work reported in this paper is based on the work of 

Card and Glass to determine whether there are similar 

correlations that they report concerning the relationship 

between design quality and errors for different styles of 

language. We are interested in investigating whether there 

is a general correlation between post-delivery defects and 

system design complexity, by studying object-oriented 

measures relating to data, structural and procedural 

complexity and comparing them with discovered, post-

delivery defects. 

     According to Card and Glass [11], system complexity 

metrics are based on the structured design modularity 

principles of coupling and cohesion. It uses both 

intramodule and intermodule complexity to arrive at a 

system complexity metric, for which the initial equation 

is:         

 

Ct= St + Dt 

 

where    Ct = system complexity 

              St = structural (intermodule)    complexity 

              Dt = data (intramodule) complexity 

 

     In this paper, we want to show the typical results of 

these complexity analyses for ten open source projects 

namely: DataCrow (Project 1), Mars (Project 2), 

HTMLParser (Project 3), SCAM (Project 4), Saxon 

(Project 5), SchemaSpy (Project 6), Eclipse Checkstyle 

(Project 7), JasperReports (Project 8), Freemind (Project 

9) and Cewolf (Project 10). The metrics that are 

appropriate to our work are Fanout (FO) and Coupling 

Between Object Classes (CBO) to represent structural 

complexity; Average Cyclomatic Complexity to represent 

procedural complexity; and Average Number of 

Parameters to represent data complexity. 

     Average Fanout for each of the ten projects are shown 

in Figure 1. According to Henry and Kafura [15], Fanout 

is a number of local flows out of a module plus the 

number of data structures that are used as output. They 

stated that modules with low Fanout have low 

complexity. In our work, we investigated Fanout of 

classes and tried to see the correlation between Fanout 

(structural complexity) of the systems with post-delivery 

defects. Figure 1 shows that three projects: Mars (Project 

2), SchemaSpy (Project 5) and Saxon (Project 6) exhibit 

high Fanout values, which potentially means that there 

has been inadequate factoring performed in the project.  

     In Figure 2, the Average Cyclomatic Complexity 

(procedural complexity) of each of the ten systems are 

presented. Cyclomatic Complexity is the measure of the 

number of control flows within a module [16]. According 

to McCabe, the greater the number of paths through a 

module, the higher the complexity.  McCabe has 

suggested that, on the basis of empirical evidence,  when 

Average Cyclomatic Complexity per module of a project 

exceeds 10, the project may be problematic [16]. In our 

findings, only two projects: DataCrow (Project 1) and 

Cewolf (Project 10) have Average Cyclomatic 

Complexity per module less than 10. Hence, according to 

McCabe, the other eight projects need to be investigated 

further to find out the reasons for the high values of 

Average Cyclomatic Complexity.  In this work, the 

formula for Average Cyclomatic Complexity is given as: 

 

Average Cyclomatic Complexity = Total (System) 

Cyclomatic Complexity/Number of Classes 

 

     Figure 3 shows the Average Number of Parameters 

(Data Complexity) per class for each of the ten projects. 

The internal complexity (Cyclomatic Complexity) of a 

module represents the amount of work it must perform. 

Card and Glass showed that Data Complexity (Number of 

Parameters) was a predictor of Procedural Complexity 

(Cyclomatic Complexity). Figure 4 illustrates that such a 

relationship holds for the ten Java projects we studied. 
 

Figure 1. Average Fanout 
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Figure 2. Average Cyclomatic Complexity 
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Figure 3. Average Parameters 
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Figure 4.  Procedural Complexity vs Data Complexity 

Average Cyclomatic Complexity (Procedural Complexity) vs Average Parameters (Data 

Complexity)
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   In Figure 4, the linear fit for the ten systems is 

represented by the equation: Decisions per Class = 2.25 x 

D + 1.03. This means that for each unit of data 

complexity (number of parameters), 2.25 decisions must 

be made to implement the required function and in 

addition, the average class includes a base of 1 decision 

(perhaps) not directly related to the data function of the 

class.  This relationship closely aligns with the findings of 

Card and Glass [11], so that if a design is created that 

contains little in the way of detail for the internals of each 

class (in this case for Java) but does show expected 

parameters for each class (indicating data complexity), the 

likely degree of procedural complexity can be predicted 

and additionally the potential effort required to implement 

each class.  Such a measure can help to produce an 

effective design before too much detail is added. 

 

Figure 5.  Executable Statements vs Data Complexity 

Average Executable Statements vs Average Parameters (Data Complexity)
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Figure 5 demonstrates that data complexity effectively 

predicts the size of a class in terms of executable 

statements. The linear fit for the ten systems is:  

Executable Statements = 9.44 x D + 8.25, which means 

that an increase of one unit of data complexity increases 

program size by around nine executable statements. The 

correlations between these two variables is good (R
2
 = 

0.64). This result is consistent with the findings of Card 

and Glass [11] for RATFOR (4.1 D + 24.5), who show 

that data complexity is a good predictor of subroutine 

size. This result also provides insight into an estimate of 

effort to create each module/class. 

 

5. Tools Comparison 
 

In this paper, we compare the results of metrics of 

particular interest to us as produced from three different 

tools. Our original intention in using the three tools was 

based on a belief that the three particular metrics in which 

we were interested could easily be verified as accurate 

provided there existed some direct relationship between 

the possible varying ways in which two or more of the 

tools might produce the metrics.  For some other metrics, 

such as Number of Classes, the three tools have produced 

the same results.  However, for the metrics of interest to 

us that relate to data complexity, procedural complexity 

and structural complexity as defined by Card and Glass 

[11], it is difficult to obtain any such verification.   

      In order to measure the metrics relevant to our work, 

we need to use the three tools and combine the results to 

arrive at substantial conclusions empirically. Because we 

are analyzing systems constructed using object-oriented 

languages, one of the key metrics is Coupling Between 

Objects (CBO) which we believe has parallels to Card 

and Glass’s Fanout.  Only one tool (CJKM) can provide 

this metric.  However Jstyle does purport to provide 

actual Fanout. 

     Since we are measuring object-oriented systems, we 

thought CBO could be used as a measure of structural 

complexity. It was also thought that we could validate the 

CBO metrics with the actual Fanout obtained from JStyle.  

The plot of Average CBO and Average Fanout is shown 

in Figure 6 below. From the plot, the linear fit for the 

systems is CBO = 0.31 x Fanout + 3.18 which means that 

CBO is about a quarter of the Fanout.  If Fanout is zero, 

we obtain a constant CBO of (approx.) 3 which indicates 

that CBO is more complex than Fanout because it 

includes more variables like method calls, inheritance, 

arguments, return types and exceptions, while Fanout is a 

simple measure of (use) dependency between 

modules/classes. We had expected to see a close 

relationship between CBO and Fanout, but we found that 

the correlation is quite weak (R
2
=0.1) and thus needs 

further investigation. 

       However, when we plot Total CBO against Total 

Fanout for the projects, we find that the correlation 

between the two variables is very strong (R
2
 = 0.97) and 

the linear fit is CBO = 0.64 Fanout. This is shown in 

Figure 7 below and we believe that the poor correlation 
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that was shown in Figure 6 might be influenced by other 

properties of the individual systems, i.e. high use of 

inheritance, amount of interface code etc. The degree to 

which such properties influence the correlation between 

CBO and Fanout is still being studied. 

 

Figure 6.  Average CBO vs Average Fanout 

Average CBO vs Average Fanout

y = 0.31x + 3.18

R2 = 0.10

0

2

4

6

8

10

12

14

7 9 11 13 15 17 19

Average Fanout

A
v
e
ra

g
e
 C

B
O

 
 

Figure 7.  Total CBO vs Total Fanout 

CBO vs Fanout
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Another interesting finding is that System Complexity 

seems to be a good predictor of Total Post-Delivery 

Defects in the systems. This is depicted in Figure 8 below. 

The linear fit of these systems is: Total Defects = 33.85 

System Complexity – 315.09. We have found that the 

correlation between these two variables is good (R
2
=0.64) 

and tends to support the hypothesis that System 

Complexity can predict the Total Post-Delivery Defects in 

object-oriented systems. This relationship corresponds to 

the type of relationship found by Card and Glass [11] 

(R
2
=0.83) and Error Rate = 0.4 Complexity – 5.2 (for pre-

delivery defects). 

    Figure 9 demonstrates that unlike Card and Glass’s 

results, Average Class Size may have some effect on 

Defect Rate, as shown by the correlation (R
2
 = 0.51) for 

the parabola (0.02x
2 – 

2.71x + 95.19). From the plot in 

Figure 9, it seems that smaller systems have higher defect 

rates than larger systems. As the system size rises, 

Defects/KLOC drop gradually before rising again, 

indicating that there maybe some optimal class size for 

lowest defect rates. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  System Complexity vs Total Defects 
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Figure 9.  Average Class Size vs Defects/KLOC 
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6. Tools Validation     
 

   Using a combination of multiple tools to extract metrics 

from software projects has its own challenges, especially 

to ensure that data collected is correct across all tools. 

This section will discuss the process of validating the data 

collected using the three tools: CKJM, JStyle and RSM.  

 

1)    Validating similar metrics 

    Since some tools can produce similar metrics, the 

first step is to check whether such metrics obtained 

by each tool have the same values. For example all 

tools can produce Number of Classes, therefore, it is 

important to validate that all tools produce the same 

results for this measure. The same process goes for 

other metrics that are common between the tools.  

 

2)   Further analysis 

       We have managed to obtain similar results for 

metrics such as Number of Classes, Number of 

Methods and Number of Parameters, so we are 

confident that the tools have followed the same 

algorithm or process for at least three metrics. 

However, this is not the case for Cyclomatic 

Complexity. There are slight differences in the results 

for Cyclomatic Complexity produced by RSM and 

JStyle. After a thorough checking process, we 

managed to confirm that the results produced by 

JStyle adhere to the definitions given by McCabe 

[16], whereas the ones produced by RSM have 

additional properties that were not included in 

McCabe’s definition. However, after removing the 

effects of the additional properties, the results were 

the same. 
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3) Other properties 

We have explored the relationship between CBO and 

Fanout to see whether CBO can represent structural 

complexity in object-oriented systems as opposed to 

Fanout (typically used in structured design systems). 

Referring to Figure 6, the correlation between CBO 

and Fanout seems quite poor (R
2
 = 0.1) and to find 

explanations to this unexpected result, we have 

decided to do further investigations on other 

properties of the systems under study. Currently, we 

are undertaking further analysis on system properties 

such as comparing CBO and Fanout for different 

types of systems; frequency graphs of CBO and 

Fanout distribution across a system; the proportion of 

‘inheritance’ to ‘use’ relationships; the proportion of 

GUI and other interface code; and several other 

properties. It is hoped that once the analysis of these 

properties is completed, we will have a better 

understanding of the validity of using CBO and 

Fanout depending on system properties. 

 

7. Conclusion and Further Work 
 

  The three tools (CJKM, RSM and JStyle) can be used to 

collect a variety of metrics to suit the needs of different 

measurement objectives. In our work, we used the tools to 

gather data from several open source projects and we 

found that all tools have their own strengths and 

weaknesses but no one tool produces all the metrics that 

we need in our work. In other words, although these tools 

can collect different sets of metrics, they must be used to 

complement each other in producing the particular 

metrics required for our work.   

   The main contribution of this paper is to provide 

insights in using a combination of tools to extract metrics 

from software systems and the processes needed to ensure 

the results obtained from (at least) these tools are valid 

and trustworthy. Not only it is possible to encounter 

different ‘implementations’ of metrics among tools, but 

also there can be apparent inconsistency confounding 

and/or unexpected relationships among what seem to be 

similar metrics.  

     Further work is needed to investigate the relationship 

between CBO and Fanout to get a better understanding of 

the two metrics. We will continue to analyze the metrics 

obtained through these tools and explore further the 

properties of the projects under study. Moreover, in order 

to determine the consistency of our results further, 

snapshots of infrequent system releases is necessary. We 

will also look into the possibility of using cumulative 

defects of the systems as a measure of system defects and 

not only consider the defects reported for a particular 

release. In addition, the relationship between defect rate 

and average class size will be investigated further. 
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