597 research outputs found

    Cardiopulmonary discipline science plan

    Get PDF
    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area

    A model for plasma volume changes during short duration spaceflight

    Get PDF
    It is well established that plasma volume decreases during spaceflight and simulated weightlessness (bedrest). The decrement in plasma volume is thought to contribute to the orthostatic intolerance that has been observed in some crew members following spaceflight. To date, no studies have evaluated the effectiveness of fluid countermeasures of varying osmolality in the restoration of plasma volume and orthostatic tolerance in a controlled study. The overall objectives of this project were to: (1) provide a model that would rapidly and safely produce a fluid loss comparable to that which occurs during short duration spaceflight; and (2) design a study that would determine the optimal drink solution to restore orthostatic tolerance and describe the mechanism(s) whereby orthostatic tolerance is restored. In summary, Lasix can be used as a way of simulating the plasma volume changes that occur during short duration spaceflight. The total loss of plasma is comparable to spaceflight. Lasix is fast acting, and has relatively few side effects. The present design for evaluating the optimal fluid countermeasures will have important implications in restoring orthostatic tolerance and function in the latter stages of spaceflight when it is essential for safe operation of the spacecraft

    The debris flow occurred at ru secco creek, venetian dolomites, on 4 august 2015: Analysis of the phenomenon, its characteristics and reproduction by models

    Get PDF
    On 4 August 2015, a very high intensity storm, 31.5 mm in 20 min (94.5 mm/h), hit the massif of Mount Antelao on the Venetian Dolomites triggering three stony debris \ufb02ows characterized by high magnitude. Two of them occurred in the historical sites of Rovina di Cancia and Rudan Creek and were stopped by the retaining works upstream the inhabited areas, while the third routed along the Ru Secco Creek and progressively reached the resort area and the village of San Vito di Cadore, causing fatalities and damages. The main triggering factor of the Ru Secco debris \ufb02ow was a large rock collapse on the northern cliffs of Mount Antelao occurred the previous autumn. The fallen debris material deposited on the Vallon d\u2019Antrimoia inclined plateau at the base of the collapsed cliffs and, below it, on the Ru Salvela Creek, covering it from the head to the con\ufb02uence with the Ru Secco Creek. The abundant runoff, caused by the high intensity rainfall on 4 August 2015, entrained about 52,500 m3 of the debris material laying on the Vallon d\u2019Antrimoia forming a debris \ufb02ow surge that hit and eroded the debris deposit covering the downstream Ru Salvela Creek, increasing its volume, about 110,000 m3 of mobilized sediments. This debris \ufb02ow routed downstream the con\ufb02uence, \ufb02ooding the parking of a resort area where three people died, and reached the village downstream damaging some buildings. A geomorphological analysis was initially carried out after surveying the whole basin. All liquid and solid-liquid contributions to the phenomenon were recognized together with the areas subjected to erosion and deposition. The elaboration of pre and post-event topographical surveys provided the map of deposition-erosion depths. Using the rainfall estimated by weather radar and corrected by the nearest rain gauge, about 0.8 km far, we estimated runoff by using a rainfall-runoff model designed for the headwater rocky basins of Dolomites. A triggering model provided the debris \ufb02ow hydrographs in the initiation areas, after using the simulated runoff. The initial solid-liquid surge hydrographs were, then, routed downstream by means of a cell model. The comparison between the simulated and estimated deposition-erosion pattern resulted satisfactory. The results of the simulation captured, in fact, the main features of the occurred phenomenon

    Space life sciences: A status report

    Get PDF
    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research

    Publications of the Space Physiology and Countermeasures Program, Cardiopulmonary Discipline: 1980-1990

    Get PDF
    A 10-year cumulative bibliography of publications resulting from research supported by the Cardiopulmonary Discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are Fluid Shifts, Cardiovascular Fitness, Cardiovascular Physiology, and Pulmonary Physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University

    Right Ventricular Tissue Doppler Assessment in Space During Circulating Volume Modification using the Braslet-M Device

    Get PDF
    This joint U.S. - Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, which effectively reduces the volume returning to the heart in the central circulation. A novel methodology was tested on the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the Braslet-on-occlusion cuffs, as well as to modified Valsalva and Mueller maneuvers. Baseline echocardiographic tissue Doppler imaging (TDI) of the right ventricular free wall with no Braslet applied shows early diastolic E' (16 cm/sec), late diastolic A' (14 cm/sec), and systolic (12 cm/sec) velocities compatible with normal subjects on Earth. TDI of the RV free wall with Braslet applied shows that early diastolic E' decreased by 50% (8 cm/sec), late diastolic A' increased by 45%, and systolic S' remains unchanged. TDI of the RV free wall approximately 8 beats after the Braslet was released shows early diastolic E' (8 cm/sec), late diastolic A' (12 cm/sec), and systolic S' (13 cm/sec) velocities. During this portion of the release, early diastolic E' did not recover to baseline values but late diastolic A' and systolic S' recovered to pre-Braslet values. The pre-systolic cross-sectional area of the internal jugular vein with Braslet off was 1.07 cm(sup 2) and 1.13 cm(sup 2) 10 min after the Braslet was applied. The presystolic cross-sectional area of the common femoral vein with Braslet off was 0.50 cm(sup 2), and was 0.54 cm(sup 2) 10 min after the Braslet was applied. The right ventricular myocardial performance Tei index also was calculated for comparison with typical values found in healthy subjects on Earth. Baseline and Braslet-on values for Tei index were 0.25 and 0.22 respectively. Braslet Tei indices are within normal ranges found in healthy subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of this study. Tissue Doppler imaging of the right ventricle revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower-extremity interstitial and vascular space after only 10 minutes of application. This report demonstrates that Braslet application affects right ventricular physiology in long-duration space flight based on TDI and that this effect is in part due to venous hemodynamics

    USSR Space Life Sciences Digest, issue 6

    Get PDF
    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine

    Physiological responses to prolonged bed rest in humans: A compendium of research, 1981-1988

    Get PDF
    Clinical observations and results form more basic studies that help to elucidate the physiological mechanisms of the adaptation of humans to prolonged bed rest. If the authors' abstract or summary was appropriate, it was included. In some cases a more detailed synopsis was provided under the subheadings of purpose, methods, results, and conclusions

    Heart-Lung Interactions in Aerospace Medicine

    Get PDF
    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data
    • …
    corecore