592 research outputs found

    Towards concept analysis in categories: limit inferior as algebra, limit superior as coalgebra

    Get PDF
    While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires *concept mining* and *concept analysis* to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In categorical terms, most of them can be described as bicompletions of enriched matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched categories. Yet it has been well known for more than 40 years that ordinary categories themselves in general do not permit such completions. Armed with this new semantical view of Dedekind-MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery. It turns out that simple categorical versions of the *limit superior* and *limit inferior* operations characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for ordinary categories, and boils down to the more familiar enriched versions when the limits inferior and superior coincide. This explains away the apparent gap among the completions of ordinary categories, and broadens the path towards categorical concept mining and analysis, opened in previous work.Comment: 22 pages, 5 figures and 9 diagram

    Parabolic Catalan numbers count flagged Schur functions and their appearances as type A Demazure characters (key polynomials)

    Full text link
    Fix an integer partition lambda that has no more than n parts. Let beta be a weakly increasing n-tuple with entries from {1,..,n}. The flagged Schur function indexed by lambda and beta is a polynomial generating function in x_1, .., x_n for certain semistandard tableaux of shape lambda. Let pi be an n-permutation. The type A Demazure character (key polynomial, Demazure polynomial) indexed by lambda and pi is another such polynomial generating function. Reiner and Shimozono and then Postnikov and Stanley studied coincidences between these two families of polynomials. Here their results are sharpened by the specification of unique representatives for the equivalence classes of indexes for both families of polynomials, extended by the consideration of more general beta, and deepened by proving that the polynomial coincidences also hold at the level of the underlying tableau sets. Let R be the set of lengths of columns in the shape of lambda that are less than n. Ordered set partitions of {1,..,n} with block sizes determined by R, called R-permutations, are used to describe the minimal length representatives for the parabolic quotient of the nth symmetric group specified by the set {1,..,n-1}\R. The notion of 312-avoidance is generalized from n-permutations to these set partitions. The R-parabolic Catalan number is defined to be the number of these. Every flagged Schur function arises as a Demazure polynomial. Those Demazure polynomials are precisely indexed by the R-312-avoiding R-permutations. Hence the number of flagged Schur functions that are distinct as polynomials is shown to be the R-parabolic Catalan number. The projecting and lifting processes that relate the notions of 312-avoidance and of R-312-avoidance are described with maps developed for other purposes.Comment: 27 pages, 2 figures. Identical to v.2, except for the insertion of the publication data for the DMTCS journal (dates and volume/issue/number). This is two-thirds of our preprint "Parabolic Catalan numbers count flagged Schur functions; Convexity of tableau sets for Demazure characters", arXiv:1612.06323v

    Bounds on the size of codes

    Get PDF
    In this dissertation we determine new bounds and properties of codes in three different finite metric spaces, namely the ordered Hamming space, the binary Hamming space, and the Johnson space. The ordered Hamming space is a generalization of the Hamming space that arises in several different problems of coding theory and numerical integration. Structural properties of this space are well described in the framework of Delsarte's theory of association schemes. Relying on this theory, we perform a detailed study of polynomials related to the ordered Hamming space and derive new asymptotic bounds on the size of codes in this space which improve upon the estimates known earlier. A related project concerns linear codes in the ordered Hamming space. We define and analyze a class of near-optimal codes, called near-Maximum Distance Separable codes. We determine the weight distribution and provide constructions of such codes. Codes in the ordered Hamming space are dual to a certain type of point distributions in the unit cube used in numerical integration. We show that near-Maximum Distance Separable codes are equivalently represented as certain near-optimal point distributions. In the third part of our study we derive a new upper bound on the size of a family of subsets of a finite set with restricted pairwise intersections, which improves upon the well-known Frankl-Wilson upper bound. The new bound is obtained by analyzing a refinement of the association scheme of the Hamming space (the Terwilliger algebra) and intertwining functions of the symmetric group. Finally, in the fourth set of problems we determine new estimates on the size of codes in the Johnson space. We also suggest a new approach to the derivation of the well-known Johnson bound for codes in this space. Our estimates are often valid in the region where the Johnson bound is vacuous. We show that these methods are also applicable to the case of multiple packings in the Hamming space (list-decodable codes). In this context we recover the best known estimate on the size of list-decodable codes in a new way

    A partial order on classical and quantum states

    Get PDF
    In this work we extend the work done by Bob Coecke and Keye Martin in their paper “Partial Order on Classical States and Quantum States (2003)”. We review basic notions involving elementary domain theory, the set of probability measures on a finite set {a1, a2, ..., an}, which we identify with the standard (n-1)-simplex ∆n and Shannon Entropy. We consider partial orders on ∆n, which have the Entropy Reversal Property (ERP) : elements lower in the order have higher (Shannon) entropy or equivalently less information . The ERP property is important because of its applications in quantum information theory. We define a new partial order on ∆n, called Stochastic Order , using the well-known concept of majorization order and show that it has the ERP property and is also a continuous domain. In contrast, the bayesian order on ∆n defined by Coecke and Martin has the ERP property but is not continuous
    corecore