ABSTRACT

Title of dissertation: BOUNDS ON THE SIZE OF CODES

Punarbasu Purkayastha
Doctor of Philosophy, 2010

Dissertation directed by: Professor Alexander Barg
Department of Electrical and Computer Engineering
and The Institute for Systems Research

In this dissertation we determine new bounds and properties of codes in three
different finite metric spaces, namely the ordered Hamming space, the binary Ham-
ming space, and the Johnson space.

The ordered Hamming space is a generalization of the Hamming space that
arises in several different problems of coding theory and numerical integration.
Structural properties of this space are well described in the framework of Delsarte’s
theory of association schemes. Relying on this theory, we perform a detailed study
of polynomials related to the ordered Hamming space and derive new asymptotic
bounds on the size of codes in this space which improve upon the estimates known
earlier.

A related project concerns linear codes in the ordered Hamming space. We
define and analyze a class of near-optimal codes, called near-Maximum Distance
Separable codes. We determine the weight distribution and provide constructions
of such codes. Codes in the ordered Hamming space are dual to a certain type of
point distributions in the unit cube used in numerical integration. We show that
near-Maximum Distance Separable codes are equivalently represented as certain
near-optimal point distributions.

In the third part of our study we derive a new upper bound on the size of a
family of subsets of a finite set with restricted pairwise intersections, which improves
upon the well-known Frankl-Wilson upper bound. The new bound is obtained by
analyzing a refinement of the association scheme of the Hamming space (the Ter-
williger algebra) and intertwining functions of the symmetric group.

Finally, in the fourth set of problems we determine new estimates on the size
of codes in the Johnson space. We also suggest a new approach to the derivation of
the well-known Johnson bound for codes in this space. Our estimates are often valid
in the region where the Johnson bound is vacuous. We show that these methods
are also applicable to the case of multiple packings in the Hamming space (list-
decodable codes). In this context we recover the best known estimate on the size of
list-decodable codes in a new way.
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Notation

Boldface low-case letters a, b, c, ... denote vectors. 0 denotes a zero vector
or an all-zero matrix as appropriate. Working with the ordered Hamming space,
we denote shape vectors by low-case letters a,b, e, f,... (and occasionally by F;).
Finite sets are denoted by capital letters A, B, F, etc. Ideals in a partial order are
denoted I, 7, while J refers to a family of ideals.

Some commonly used notation and acronyms are summarized in the table

below.
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MDS
NMDS
OOA

r.a.

code

a code C of block length n, size M and minimum distance d

a linear code C of length n, dimension £ and minimum distance d
the set of complex numbers

distance between two vectors

family of finite sets

finite field of ¢ elements

g-ary entropy function: hy(z) = —zlog, 57 — (1 — z)log,(1 — z)
Hamming space

ordered Hamming space

univariate Krawtchouk polynomial

multivariate Krawtchouk polynomial

size of a code or a set

the set {1,2,...,n}

partially ordered sets (posets)

intersection number

additive group of order ¢

set of relations in an association scheme

the set of real numbers

the non-zero coordinates of the vector @: suppx = {i : z; # 0}
a sphere of radius w

the space of univariate polynomials of degree up to k
the space of multivariate polynomials of total degree up to x
abstract finite metric space

left-adjusted

Linear Programming

Maximum Distance Separable

Near Maximum Distance Separable

Ordered Orthogonal Array

right-adjusted
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CHAPTER 1

Introduction

1.1 Research area

This dissertation is devoted to algebraic and combinatorial properties of error-
correcting codes. The theory of error-correcting codes began as an answer to the
quest of reliable transmission of digital data over noisy channels. Its applications
have since expanded into diverse areas of electrical engineering, algorithms and
data structures, data security, and presently include copyright protection, property
testing, computational biology, methods for reconstruction of under-sampled data,
wireless transmission protocols, biometrics and much more. At the same time coding
theory has given rise to advances in several mathematical disciplines including dis-
crete and algebraic geometry, combinatorics, analysis, and computational algebra.
This dissertation is focused on a range of problems in coding theory in the areas that
originate in applied questions but rely on mathematical methods for their solution.

In the simplest setting, an error-correcting code is a set of binary words de-
signed to transmit messages over a communication link (“channel”) that introduces
occasional errors in the transmission. The task of code design is to ensure recovery
of the messages by the recipient under the reliability constraints specified by the
system. The maximum number of messages that can be sent through the channel
under these constraints has a direct impact on the efficiency of the overall system.
Estimating the largest possible number of messages thus becomes one of the main
problems encountered in system design.

The problem of estimating the largest size of an error-correcting code with a
given recovery guarantee has led to the development of new methods in algebraic and
enumerative combinatorics. One prominent example is P. Delsarte’s theory of asso-
ciation schemes [26] that has shaped a new mathematical discipline and continues to
be used in the analysis of extremal and structural properties of codes. Applications
of this theory account for such spectacular discoveries as the best known estimate
for the density of packing of spheres in the n-dimensional real space, deep structural
results for binary error-correcting codes, extremal arrangements of spheres in the
real space, and a universal combinatorial description of configurations in a large
class of finite spaces.

To describe the main results of this dissertation, recall that the Hamming
distance between two n-dimensional binary vectors & and y in {0,1}" equals the



number of their distinct coordinates, i.e., dy(x,y) = [{i : ; # yi;, i = 1,...,n}|.
The distance dy arises as an adequate performance measure for data transmission
over a channel with independent equiprobable errors (“bit flips”), called the binary
symmetric channel. A more complex transmission scenario occurs when the channel
preferentially disrupts certain communication sublinks. This channel behavior can
be modeled by a generalization of the distance dy called the ~-Hamming distance,
defined on the binary space {0, 1} = {0,1}" x---x{0,1}" (here r > 1). For a vector

x € {0,1}" we can write € = (x1,...,x,), where each x;, i = 1,...,n is a block of
r bits. The distance between two vectors @, y is a sum of contributions of the blocks
of r bits, where the distance between two blocks x;,y,, i = 1,...,n is measured by

the largest index of the nonzero bit in the difference x; —y,. This distance addresses
the relative preference of the sub-channels, introducing an ordering on the set of
coordinates of the vector and giving rise to the term “ordered Hamming weight” to
describe the r-Hamming distance and the related norm?!.

Another apparently rather different problem that gives rise to the ordered
Hamming weight on binary vectors relates to numerical integration of continuous
functions on the unit cube U™ = [0,1)" in R". If f is such a function, then [, fdx
can be approximated by averaging f over a finite sample of points M in the cube,
called a net. From the early results of E. Hlawka [45] it is known that the error
| Jin [ dz — 55 3 e f(2)], where M = |M], is bounded above by the deviation of
the point set from a uniform distribution, called the star-discrepancy D*(M) of the
net. It is a long standing conjecture, proved for n = 1,2, that for any net M, the
smallest possible star-discrepancy has the order of magnitude O(M ! (log M)"~1).
This led H. Niederreiter [67] to introduce a special class of nets, called (¢, m, n)-nets,
whose star-discrepancy has the conjectured optimal scaling order.

As a result of the works of Lawrence [51], Mullen and Schmid [63], and Mar-
tin and Stinson [60] it became clear that codes in the ordered Hamming space and
(t,m,n)-nets form classes of dual objects. It therefore became possible to give a
unified treatment of these seemingly unrelated notions. For a given error of inte-
gration it is desired that the size of the net be as small as possible. As a result
of the duality, upper estimates on the size of codes in the ordered Hamming space
result in lower estimates on the size of nets in the unit cube. The ordered Hamming
metric has since arisen in a surprisingly large number of disparate applications: it
turns out to be an adequate quality measure for communication over slowly fading
channels [82, 40], appears in a recent list decoding algorithm of Reed-Solomon codes
[65], and in the study of linear complexity of sequences [61].

In this dissertation, we consider the following two problems related to the
ordered Hamming space. The first one is concerned with the study of optimal linear
codes. A class of optimal linear codes in the ordered Hamming space is given by
Maximum Distance Separable (MDS) codes?. These codes have the largest size
possible for a given value of the minimum separation between distinct code points

!These somewhat informal definitions will be made precise in Section 2.2.

2 A well-known class of MDS codes in the usual Hamming space is the family of Reed-Solomon
codes (see, e.g., Roth [73]). The construction of Reed-Solomon codes has also been extended to
the ordered Hamming space [72].



and give rise to optimal point distributions in the unit cube. Properties of MDS
codes in the ordered Hamming space were studied in a number of papers [72, 78, 30].
Addressing this area, we study properties of near-optimal, or near-MDS (NMDS)
codes, find their parameters and establish their relation to point distributions.

The second problem area is related to the study of the combinatorial structure
of the ordered Hamming space (its association scheme). We establish properties of
the eigenvalues of the scheme and show that they give rise to a family of orthogonal
polynomials of several discrete variables (the multivariate Krawtchouk polynomials).
This enables us to address the problem of estimates of the size of optimal codes in the
ordered Hamming space, studied previously in [72, 59, 19], both in the asymptotic
and finite-length setting. By the duality between nets and codes, these estimates
also yield lower bounds on the size of (¢, m,n)-nets.

A well-studied class of problems in extremal combinatorics deals with estimates
of the maximum size of a family of subsets of the n-set that afford a restricted
number of pairwise intersections, or distances, or satisfy other conditions of this
kind. The study of problems of this nature dates back to the work of Fisher on
experimental designs [36]. A classical example in this area is the Erdés-Ko-Rado
theorem [34] about the maximum number of subsets such that no two of them are
disjoint. Another problem deals with the maximum size of a binary code in which the
distance between every two (distinct) vectors takes one of [ given values [26, 70, 13].
Extensions of these results were obtained in [5, 38, 39] and many other works. We
study the problem of Frankl and Wilson [37] that deals with bounds on the number
of subsets with [ intersections, employing algebraic ideas brought forth recently in
A. Schrijver’s study of bounds on codes in the Hamming space [74].

The final group of problems deals with estimates of the size of codes in a subset
of the Hamming space formed of vectors of a fixed Hamming weight, or constant
weight codes. Bounds on the size of constant weight codes form the contents of an
extensive survey [4]. One of the most well-known results is the Johnson bound which
has recently gained prominence because of its relation to Sudan-type list decoding
of Reed-Solomon and algebraic-geometric codes [73]. Averaging arguments involved
in its proof gave rise to some of the classical inequalities in coding theory, e.g., [76].
Following this line of research, we consider embeddings of codes in the real space
and bounds on constant weight and list-decodable codes.

1.2 Contributions

This dissertation makes the following contributions to the problems discussed
above.

NMDS codes in the ordered Hamming space: Maximum distance sep-
arable (MDS) codes in the ordered Hamming space were studied in [72, 78, 47]. They
are known to correspond to certain optimal distributions of points in the unit cube.
In this context, we consider near-maximum distance separable (NMDS) codes, i.e.,
codes whose minimum distance is just one less than that of MDS codes. We develop



elements of the theory of linear codes in the ordered Hamming space and use it
to establish structural properties of ordered NMDS codes. We also determine the
weight distribution of such codes and show that they are equivalently represented
as distributions of points in the unit cube which have properties close to optimal
distributions. We also give some constructions of ordered NMDS codes. Most of
the results in this context can be readily extended to a generalization of the ordered
Hamming metric called the poset metric space. For this reason our derivations are
phrased in the language of arbitrary poset metrics while results for the ordered case
are derived as their specializations. This group of problems is studied in Chapter 4
of the thesis (see also [15]).

Bounds on the size of codes in the ordered Hamming space: We
derive new bounds on the maximum size of codes in the ordered Hamming space for
a given minimum separation between two distinct code points (minimum distance).
Our results improve upon earlier bounds of Rosenbloom and Tsfasman [72], Martin
[57, 59], and Bierbrauer [19]. In particular, we obtain the best known asymptotic
upper bounds on the size of ordered codes. Owing to the duality between codes and
nets, the bounds on codes also result in lower bounds on the size of nets. These
results form the contents of Chapter 5 (see also [14, 11]).

Bounds on sets with few intersections: Let F = {U;,Us, ...} be a family
of subsets of [n] = {1,...,n} such that any two distinct subsets satisfy the condition
\U;NU| € {r1,....,m}, 0<r; <n—1,4i=1,...,l. By a well-known theorem
of Frankl and Wilson [37], the size of such a family satisfies |F] < 32'_, ("). This
bound is attained if the intersections are taken to be {ry,...,r} ={0,1,...,1 -1}
[37, 69]. We use coding-theoretic methods to improve the Frankl-Wilson bound for
the case when the intersections are {rq,...,r} ={n—1,...,n— 1} for I < [n/2].
The proof relies on an approach based on the properties of a certain matrix algebra
derived from allocations of triples of points in the Hamming space (the Terwilliger

algebra of the Hamming space [83, 74]) and linear-algebraic considerations.

Bounds on constant weight codes in the Hamming space: The John-
son bound on the size of constant weight codes is proved by estimating the aver-
age distance between distinct vectors in the code. Refining this technique, we use
“weighted averages” and some classical inequalities to prove new bounds on the size
of such codes. The values of these bounds are at times exact and meet the table
of bounds on constant weight codes of small length [4]. We also show that this
technique can be adopted to provide new bounds on non-binary constant weight
codes. A further generalization of the Johnson bound is related to the concept of
multiple packings of the Hamming space (also termed list-decodable codes). The
corresponding result in this case was derived by Blinovskii [20]. We show that our
methods yield a new proof of his result, and identify obstacles in the way of its
improvement.



1.3 Structure of the dissertation

In Chapter 2 we overview the basic notions of algebraic combinatorics as they
apply to coding theory in finite metric spaces. We begin with a discussion of
association schemes and the related duality notion for codes and orthogonal
arrays. Most of Section 2.2 is devoted to the association scheme that describes
the ordered Hamming space. We elaborate on the duality between codes
and nets in this context and state a linear programming bound on codes and
designs.

Chapter 3 contains a synopsis of the techniques that are used to derive bounds
on codes. These techniques are used in Chapters 5 and 7 of the thesis.

Chapter 4 is devoted to MDS and NMDS codes in the ordered Hamming
space. The new results obtained in this chapter include: computation of
the weight distribution of ordered NMDS codes (Theorem 4.9), a relation
of NMDS codes to (t,m,n)-nets (Theorem 4.7), and constructions of NMDS
codes (Section 4.4).

Chapter 5 is devoted to properties of multivariate Krawtchouk polynomials
and estimates of the size of codes and orthogonal arrays. The new results here
are: most of Section 5.3, and several new bounds for codes and orthogonal
arrays (Theorems 5.6, 5.12, 5.17).

Chapter 6 begins with a brief introduction to polynomials related to the Ter-
williger algebra of the Hamming space. This enables us to introduce the
problem of bounds on families of sets with few intersections by showing a
connection to these polynomials. A new bound on the size of such families is
given in Theorem 6.3.

Chapter 7 is concerned with bounds on constant weight codes in the Ham-
ming space. We first provide a bound on constant weight codes in the binary
Hamming space and then show how this technique can be extended to the
non-binary case. We also make a connection to bounds on list-decodable bi-
nary codes. The new results in this chapter are related to the proof method
and bounds on constant weight codes of Theorems 7.2, 7.4, 7.5 and 7.6.

The appendix (Chapter A) contains some theorems from linear algebra which
are used in other parts of this dissertation.

Chapter Dependencies:




CHAPTER 2

Algebraic combinatorics in coding theory

In this chapter we give a brief overview of methods of algebraic combinatorics
and harmonic analysis on groups that are used in later parts of the thesis to derive
bounds on the size of codes.

Section 2.1 is devoted to the theory of association schemes. The notions of
dual codes, designs and orthogonal arrays arise naturally as a part of this theory. It
also leads to a formulation of general linear programming problems whose solutions
give bounds on codes in various finite and infinite spaces. For the so-called polyno-
mial association schemes, these bounds are expressed as solutions of optimization
problems for certain classes of orthogonal polynomials supported by the scheme.

Examples of association schemes that are used in later chapters of the thesis
are given in Section 2.2. In particular, we discuss the Hamming scheme, the Johnson
scheme, and the ordered Hamming scheme.

In Section 2.3 we discuss an extension of association schemes given by the
Terwilliger algebra. The polynomials supported by this algebra are used in Chapter
6 to provide new bounds on sets with few intersections.

Another facet of the theory of bounds on codes arises when we consider the
action of the isometry group on the underlying metric space. These considerations
tie bounds on codes to group representations and special functions. In this context,
in Section 2.4 we give a brief overview of the decomposition of the space of functions
on the Hamming space under the action of its isometry group. The relevant family of
orthogonal polynomials that arise under this action are the well-known Krawtchouk
polynomials. In Section 2.4.3 we state some useful properties of Krawtchouk poly-
nomials.

The ideas and methods discussed in this chapter form a classic part of com-
binatorics. They are covered in a vast body of literature. A good source for the
theory of association schemes is Delsarte’s thesis [26]. The group-theoretic approach
to bounds on codes was pioneered by Kabatyanskii and Levenshtein [52] following
the foundational works of Gelfand [41], Krein [53], Schoenberg [75], Bochner [21]
and others.



2.1 Association schemes

The concept of an association scheme is one of the most important in algebraic
combinatorics. Its use in coding theory was initiated by Delsarte in his ground-
breaking work [26] and has since resulted in a unifying approach to structural and
extremal properties of codes and combinatorial designs. Most results in this section
are due to Delsarte [26].

Definition 2.1 Let X be a finite set and let R = {Ry,..., Ry} be a set of N +1
binary relations on X. A = {X, R} is called an N-class association scheme if

1. Ry ={(x,x) : x € X} is the identity relation.

2. For every ¢,y € X, (x,y) € R; for exactly one i. Thus, the set R forms a
partition of X x X.

3. For each i in {0,...,N}, R; is symmetric: (x,y) € R; < (y,x) € R; for any
Tz, yc X.

4. There exist non-negative numbers pfj called intersection numbers, defined as

pfj =NHzeX:(x,2) € R;,(y,2) € R;}|, forany (x,y) € Ry,
i,7,k€{0,...,N}.

The numbers pfj depend only on i, j and k, and satisfy the condition pfj = pfl

An immediate consequence of the definition is that for each i = 0,..., N, the num-
bers v; = p); = {y € X : (z,y) € R;}| are independent of . These numbers are
called the valencies of the scheme.

An equivalent definition of an association scheme is given in terms of a particu-
lar matrix algebra A called the Bose-Mesner algebra. For i =0,..., N let D; be the
adjacency matrix of R;, i.e., an | X| x | X| matrix such that (D;)z, = 1((x,y) € R;),
where 1(+) is the indicator function. Consider the complex vector space A generated
by the adjacency matrices D;, i.e. A £ {coDy + -+ cnyDn : ¢; € C}. The vector
space A has the following properties.

1. The all 1 matrix of size | X|, J = Dy + --- + Dy, belongs to A.

2. The adjacency matrix is real and symmetric: D; = DiT, 1=0,...,N. Hence
A is closed under conjugate transposition.

3. For any 4,5 € {0,..., N}, D;D; = S0 pk.Dy.

By property 4 of the association scheme A we obtain the relation D;D; = D,D;.
Thus, A is commutative and closed under matrix multiplication, and is hence a
commutative algebra over C.

The Bose-Mesner algebra also has a basis of minimal idempotents which we
proceed to describe. Consider the complex vector space U = (e, € X), where e,

7



is the indicator vector of & in X. Since the Bose-Mesner algebra A is Hermitian and
commutative, by the spectral decomposition theorem there exists a unitary matrix
that simultaneously diagonalizes all matrices in A. Therefore, the space U splits
into an orthogonal direct sum of the common eigenspaces {U;,i = 0,1,..., N} of
the adjacency matrices. Let E; : U — U; denote the orthogonal projection of U
onto the i-th eigenspace U;.

Then we obtain the following properties of the matrices FE;.

1. The matrices E;, i = 0,..., N are idempotent and positive semidefinite. The
set {Ey, ..., Ex} forms a basis for A.

2. Z;V:O E; =1, where [ is an identity matrix of order | X|.
3. | X|Ey = J.
4. The adjacency matrices can be written in the basis of the idempotent matrices

as D; = Zév:opi(j)Ej and thus, for any i,7 € {0,..., N},

DiE; = pi(§) Ej.

The numbers p;(j) are called the first eigenvalues of A.

Define the Schur (elementwise) product of two matrices A and B by (Ao B);; =
AijBij~ Note that
Djo Dj = 0;;D;,

i.e., the Bose-Mesner algebra is also closed under the Schur product. The basis of
idempotents { Ey, ..., Ex} satisfies a set of properties under the Schur product that
are similar to the properties of the adjacency matrices under the matrix multiplica-
tion.

1. For any 4,5 € {0,..., N} the idempotent matrices satisty |X|(E; o E;) =
Zivzo qZEk The numbers qu are non-negative and are called the Krein num-
bers of the scheme.

2. Since {Dy, ..., Dy} is also a basis of A, for each j =0,..., N we can expand
E; in terms of {Dy,..., Dy} as

N
1X|E; =) q;(0) D
i=0
Therefore, | X|E; o D; = q;j(i)D;. The coeflicients ¢;(i) of this expansion are
called the second eigenvalues of the scheme.

3. Tr(E;) = rank(E;) = m;, where m; are called the multiplicities of the scheme,
and correspond to the multiplicities of the eigenvalues p;(j) of D;.



The first and the second eigenvalues of the scheme A satisfy the following important
relations.

N N
Orthogonality: > mqp; (i)pe(i) = [ X005k, > vig;(i)qi(i) = |X|m;djp. (2.1)
=0 =0
mp; (i) = v;q;(J)- (2.2)
N
pi(Dpe(@) =Y plymi(i), 0<i < N. (2.3)
=0

Duality in association schemes: Two N-class association schemes are called
Delsarte duals of each other if the adjacency matrices D;, the first eigenvalues p;(j)
and the intersection numbers pf’j of one scheme are respectively the idempotents E;,
the second eigenvalues ¢;(7), and the Krein numbers qu of the other. The duality
also exchanges the roles of the matrix and Schur multiplication. A scheme is called
self dual if it is equal (isomorphic) to its dual. A scheme is called formally self dual
if there exists an ordering of the idempotents E; under which p;(j) = ¢;(j) for each
i,7 €40,...,N}. In a formally self dual scheme v; = m; and pfj = qu also hold for
all 4,7,k € {0,...,N}. A formally self-dual scheme may or may not have a dual
scheme.

P- and @)-polynomial association schemes: Suppose that foreveryi =0,..., N
there exist polynomials P;(z) (resp. @Q;(x)) of degree i such that P;(j) = p;(j) (resp.

Q:i(7) = ¢i(j)). In this case the association scheme is called P-polynomial (resp.

Q-polynomial). From (2.1) it follows that the polynomials P;(z) and Q;(x) are or-

thogonal on {0, ..., N} with weights m, and v;, respectively. Polynomial association

schemes are particularly important in the derivation of bounds on the size of codes

and designs.

Codes in association schemes: Let A(X,R) be an association scheme with N
classes and let € C X be a code. Suppose that X is a metric space with distance
function d(-,-) and R; = {(x,y) : d(x,y) = i}. Let x = (1(x € C),z € X) be the
characteristic (column) vector of € in X. Define the inner distribution of the code C
as (By, B1, ..., By), where B; is the average number of ordered pairs of code points
that fall in R; (are distance 7 apart):
a1 o7
B; = =X Dix (2:4)
€]
1
= —|C®°NRy, i=0,...,N.
€]
It is readily seen that By = 1 and S By = |€|. The minimum distance of C is
the smallest non-zero index ¢ for which B; # 0.



The dual distribution of € is defined as
T
B = @ZBiqk(i), k=0,...,N. (2.5)
i=0

An important observation, due to Delsarte, is that the quantities Bj- are non-
negative:

1 N

= @XT (Z Qk(i)Di> X
i=0

[X]

_ T
= WX Eipx >0,

where the last step follows because Ej is positive semidefinite. This implies that
the size of the code can be bounded above as follows.

Theorem 2.1 Let € C X be a code of size M and minimum distance d. Then
M < 14 LP, where LP is the optimal value of the following linear programming
problem:

max Bd++BN
s. t. BIZO, ’l:d,,N

N
S Bun(i) = ~4(0), k=1,...,N.
i=d

Equivalently, LP is the optimal value of the following dual linear program:

min B1¢1(0) + -+ - + Byan(0)
s. t. BRZOJ k:177N

N
> Buar(i) < -1, i=d,...,N.
h=1

Dual codes and designs in association schemes: A subset C of X is
called a t-design if B = 0, k = 1,...,t. Designs have been the subject of a
large number of studies in combinatorics and applied statistics. Examples of de-
signs include such well-studied combinatorial objects as orthogonal arrays, balanced
incomplete block designs or BIBDs, and Steiner systems [55]. The notion of an
orthogonal array is also a special case of weakly-biased random variables [6].

In the particular case that X is a vector space over a finite field F,, we call C
a linear code if it is a subspace of X. We define its dual code Ct as

Ct2{yec X :(c,y)=0VeccC}
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where the inner product is computed over F,. In this case, by the well-known
MacWilliams theorem [26, Theorem 6.3] the inner distribution of €+ coincides with
the dual distribution of €. Thus if € is linear, the dual code Ct forms a t-design
with ¢t = d— 1. If the dimension of € is k then the dual code G+ has dimension n — k.

The duality between codes and designs is of fundamental nature and is mani-
fested in many important results of combinatorial coding theory [26]. One of them
is a simultaneous linear programming bound on the size of codes and designs. To
develop it, suppose that the association scheme A is ()-polynomial. Then we can
substitute the second eigenvalues g (i) by the evaluations of a polynomial Q(z).
Since the polynomials Qr(z) are orthogonal, any polynomial of degree at most N
can be written in the basis of the @)-polynomials. Finally, we note that any feasible
solution to the dual program in Theorem 2.1 is an upper bound on the value of LP.
These observations lead to the following linear programming bounds on codes and
designs.

Theorem 2.2 Consider a polynomial f(x) = fo+ Son, f:Qi(x) such that fo > 0,
fi>0,Vi=1,...,N, and f(i) <0,Vi=d,...,N. If € C X is a code of size M

and minimum distance d, then

M < f(0)/fo. (2.6)
A design © C X of size M' and strength t = d — 1 satisfies
M' = |X]fo/ f(0).
Remarks:

1. Note that we can identify f;,i = 1,..., N with (;fy of Theorem 2.1.

2. Bounds on codes obtained by the application of this theorem are called linear
programming (LP) bounds. To derive a bound, rather than attempting nu-
merical linear programming, we rely on analytical methods to find a suitable
polynomial f(x).

3. The bounds obtained from this theorem lead to some of the best asymptotic
upper bounds on the size of the code. However, the application of this method
faces non-trivial analytical challenges and asymptotic computations.

2.2 Examples of association schemes

Hamming scheme: Let Q = {0,...,q — 1} be a finite alphabet of size q viewed
as an additive group mod ¢. The Hamming space H(q,n) is the set of n-strings over
Q equipped with the Hamming distance dy(x,y) = |{z; # yi, i = 1,...,n}|. The
Hamming weight wg(-) of a vector @ is the number of non-zero coordinates in it:
wp(x)=H{i:z; #0, i=1,...,n}.
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Let R; = {(x,y) € H?*(¢q,n) : dg(x,y) =i}, i = 0,1,...,n. The space H(q,n)
together with the relations R; forms a self-dual association scheme. The valencies
(and multiplicities) of the scheme are v; = m; = (¢ — 1)1(?), i =0,...,n. Its Q-
polynomials (and P-polynomials) are given by a particular family of polynomials of
a discrete variable Ky(z;n), k = 0,...,n called the Krawtchouk polynomials. By
(2.1) the Krawtchouk polynomials are orthogonal on the set {0,...,n} with weights
m(i) = (g —1)*("), i =0,...,n. Designs in the Hamming scheme are the classical
orthogonal arrays, defined below.

Definition 2.2 An M x n matriz O with entries from the alphabet Q is called an
orthogonal array (OA) of size M, n constraints, q levels, strength t and index 0 if
any set of t columns of O contains all the q* possible row vectors, each exactly 0
times.

Binary Johnson scheme: The subset of the binary Hamming space H (2, n) that
consists of all vectors of a given weight w (with w < 7/2) is called the Johnson space.
We denote the space by 8, = {x € H(2,n) : wy(x) = w}. The distance between
two vectors @,y in 8, is defined as d;(x,y) = /2 dy(x, y). The association scheme
on 8, is given by the relations R; = {(z,y) € 82 : d;j(z,y) =i}, i = 0,...,w.
The @Q-polynomials of the scheme are given by a certain family of polynomials
Qr(x), k =0,...,w orthogonal on {0,...,w}, called the Hahn polynomials. The
Johnson scheme has no dual scheme.

Ordered Hamming space: We now describe the ordered Hamming space, on
which the results in Chapters 4 and 5 are based. We will follow this with a descrip-

tion of the association scheme on this space. Let Q = {0,...,qg — 1} be as above.
Consider the set Q™" of vectors of length nr over Q. A vector & € Q™" is written as
a concatenation of n blocks of length r each, @ = (z11,...,Z1; -« Tp1y oo, Top)-

Definition 2.3 For a given vector x € Q™" let
w,(x) = Zmax{j i # 0}
i=1

be its ordered Hamming weight, where the mazimum is taken to be 0 if the set
{j : z;; # 0} is empty. The ordered Hamming distance between vectors x,y € Q™"
is equal to d,.(x,y) = w.(x —y). Define the dual weight as

WT(.’B) = Z maX{j CTir—j41 7é 0}
i=1

Note that in the case » = 1 both w, and W, correspond to the usual Hamming
distance on Q".

Let e;, ¢ = 1,...,r be the number of r-blocks of & whose rightmost nonzero
entry is in the i-th position counting from the beginning of the block, i.e., e; = [{j :
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max{k : z;; # 0} = i}|. The r-vector e = (ey,...,e,) will be called the shape of x,
denoted shape(x). For brevity we write
le] = Zei, le|" = Ziei, eo =n —|e|.
i=1 i=1

In particular, w,(x) = |e|’. A shape vector e = (e, ...,e,) defines a partition of a
number N < n into a sum of r parts. Let N denote the set of all positive integers
and let

Any = {e € (NU{O}y Zezén}

be the set of all such partitions.

The ordered weight was first introduced by Niederreiter [67] in his study of
low-discrepancy point sets for numerical integration of functions on the unit cube
in R". Later, Rosenbloom and Tsfasman [72] independently defined the weight
W, (x) and studied codes in Q™" with respect to it. The set Q™" together with the
distance function d,.(- ,_2 will be called the ordered Hamming space (the NRT space)

and denoted by ﬁ) = H(q,n,r). Unless specified otherwise below, in this section by
distance (weight) we mean the ordered distance (weight) for some fixed value of r.

The ordered Hamming scheme: The association scheme for the ordered
Hamming space was constructed and studied by Martin and Stinson [60].

To define the ordered Hamming scheme, we need the notion of extensions of
association schemes [26, p. 17]. A scheme (X, R) is called an N-th degree extension
of an r-class scheme X = (X, D = (Dy, Dy, ... ,DT)) if its point set is the N-fold
Cartesian product of X and the relations R.,e € Ay, are given by

Re={((@1,....zn), (Y1, .-, yn)) € XV x XN [{j : (z,y;) € Di}| =,
i=0,1,...,r}

ﬁ
_ We begin with an auxiliary notion. An r-class kernel scheme X on the space
H(g, 1, ) has relations

Ri={(z,y) € H(q.1,r) x H(q.1,7) : dp(@,y) =i}, i=0,1,....r

The schemﬁ %K is formally self-dual and has a dual scheme % that is defined on
the space H(q, 1,r) which consists of the same set of points Q" but with distance
defined as d,(x,y) = W, (x — vy).

The association schime Z of the ordered Hamming space is ieﬁned as the
n-th degree extension of 3_>C In other words, the set X that affords A is Q™". The
relations in the scheme A are naturally indexed by shape vectors e € A, ,. In
particular,

(x,y) € R. < shape(x —y) =e.
For a vector & € Q™" define shape(x) = (ei,...,e,), where ¢; = [{i : 1 < i <
n, Wy (xi1, ..., xy) = J}H.
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Theorem 2.3 (Martin and Stinson [60]) The space X = Q™" together with the
relations R = {R. : e € A, .}, where

R.={(z,y) € X x X : shape(x —y)=¢}, e€A,,

]Erms a formally self-dual association scheme called the ordg"ed Hamming scheme
A. It can be constructed as an <z—fold Delsarte extension of XK.
The dual scheme of A is A whose point set is Q™" and the set of relations is
given by
R. ={(x,y) € X x X : shape(x —y) =€}, ecA,,.

The ordered Hamming space corresponding to the scheme Z is denoted by <iJ_-C(q, n,r).

The intersection numbers of the ordered Hamming scheme 7( are defined by the
shapes:

iy =Nz € ﬁ)(q,n,r) : shape(x — z) = e, shape(y — z) = f, shape(x —y) = g}/,

(2.7)
and pgf does not depend on the vectors x,y € ﬁ)(q,n,r). The valencies (and
multiplicities) of the scheme are given by

n ’
. = — 1)lelglel el A, 2.
v (60,...,6r>(q )" ) €€ O, (2.8)

The eigenvalues of the scheme are evaluations on the set A, , of certain multivariate
orthogonal polynomials, called the (multivariate) Krawtchouk polynomials . Since

the relations of Z are indexed by the shape vectors, this induces the numbering
of the polynomials. Therefore, we denote the multivariate Krawtchouk polynomial
by K¢(e) where e, f are shapes. The orthogonality relation (2.1) of the eigenvalues
takes the following form:

> veKp(e)Ky(e) = ¢ vpdp,. (2.9)
e€EAn
We refer to Sec 5.3, Chapter 5 for a more explicit description and properties of the
polynomials Ky (e).

Codes and orthogonal arrays in the ordered Hamming space: An

arbitrary subset C of ﬁ(q,n,r) is called an ordered code. If the ordered code has
minimum distance d and size M, we will call it an (nr, M, d) code. If € is a linear
ordered code of dimension k over a finite field F,, we will use the notation [nr, k, d]

instead. If € is a linear code in ;C)(q, n,r) the dual code is given by €+ = {y € F}" :
S Z;Zl ¢ij¥i; = 0 Ve € C}. Because of the ordering imposed by the duality of

the association schemes, the dual code is a subset of the space ﬁ(q, n,r).

In analogy with the definition of an orthogonal array in the Hamming space,
one can define an ordered orthogonal array (OOA) in the ordered Hamming space.
Let us call a subset of coordinates I C {1,...,rn} left-adjusted if with any coordinate
47, 0<1<n—1, 1 <7 <rin the ¢-th block it also contains all the coordinates
(ir+1,...,ir +j — 1) of the same block.
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Definition 2.4 A subset O C 9_{)(q, n,r) of size |O| = M is called a (t,n,r,q) OOA
of strength t if its projection on any left-adjusted set of t coordinates contains all the
qt rows an equal number, say 0, of times. The parameter 0 is called the index of O.

It follows that M = 0q¢'. If Q is equipped with the structure of an additive group,
then one can construct additive OOAs. OOAs (also called hypercubic designs) were
introduced in Lawrence [51] and Mullen and Schmid [63] as a combinatorial equiv-
alent of point sets suitable for numerical integration over the unit cube.

Remark: Carrying over the theory of linear codes from the classical (Hamming)
case to the context considered encounters a number of obstacles. In particular, the
relation between a code and its dual code becomes far less straightforward than in
the standard situation. Most importantly, in the present situation, the combinatorial
structure of the linear space for a linear code is not identical to the structure for
its dual code. This leads to a number of subtle changes in the standard facts about
linear codes and related combinatorial configurations.

é
Let € be a linear [nr, k,d] code in H(q,n,r) and let Ct be the set of vectors
orthogonal to € with respect to the usual inner product.

1. Considered as an OOA, Gt has parameters (d — 1,n,7,¢) with index § =

nr—k—d+1 ; ar
q , and is a subset of H(q,n,r).

2. Considered as a code with minimum distance d*, the same set of vectors Gt
H
is a linear subspace of dimension n — k in H(q,n,r).

In the ordered Hamming space the LP bound of Theorem 2.2 on the size of codes
and designs takes the following form.

Theorem 2.4 [26, 60] Let F'(f) = F0+Ze¢0 F.K.(f) be a polynomial that satisfies
Fy>0;, F.>0fore#0; F(e)<0 foralle such that) ;_ jie;>d. (2.10)
Then the size of any (nr, M,d) code satisfies
M < F(0)/Fy, (2.11)
and the size M’ of any OOA of strength t = d — 1 satisfies

M’ > ¢ Fy/F(0). (2.12)

2.3 The Terwilliger algebra of the binary Hamming space

In this section we give a brief description of a refinement of the Bose-Mesner
algebra, called the Terwilliger algebra, focusing on the binary Hamming space H =
H(2,n). Polynomials related to this algebra are used in Chapter 6 to derive bounds
on sets with few intersections.
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For a vector u € H define the support of u as the set of non-zero coordinates
in u: suppu = {i :u; #0, i =1,...,n}. For vectors u,v € H we write U =
suppu, V = suppv. For nonnegative integers s, t,r, consider the |H| x |H| matrix
My, with entries

(M Juwese = (U] = s, [V =1, [UNV]=r),

where 1(-) is the indicator function. Since dg(u,v) = s+t — 2r, it is readily seen
that the matrices can also be indexed by the distances in the set {u,v,0}, where 0
is the origin.

The Cx algebra

T = { Z CoiMgy:coy € (C}

s,t,r=0

is called the Terwilliger algebra of the Hamming space with respect to 0 [83, 74].

The algebra T contains the identity matrix and is closed under addition, matrix
multiplication, and taking the adjoint. It follows from the Artin-Wedderburn theory
[50] that there exists a unitary matrix that simultaneously reduces all the matrices
in T to a block-diagonal form. The entries of the block-diagonal matrices are, up to
scaling factors, the evaluations of the Hahn polynomials [74, 85].

The Bose-Mesner algebra of H is a commutative algebra defined by the rela-
tions between pairs of points in the Hamming space. Using a diagonalization of the
Bose-Mesner algebra, bounds on codes are obtained upon setting a linear program-
ming problem. The Terwilliger algebra of the Hamming space is a non-commutative
algebra obtained by considering relations between triplets of points one of which is
fixed to 0. Improved bounds on codes in the Hamming space have been obtained
by block-diagonalizing the Terwilliger algebra and using semidefinite programming
[74, 43]. The constraints in the semidefinite programs subsume the constraints in
the linear programs obtained from the Bose-Mesner algebra. We refer to [74, 43, 85]
for a detailed discussion of these results.

2.4 Functions on the binary Hamming space

In this section we develop an alternative view of (-polynomials of the associ-
ation scheme and their generalizations. Our focus will be on the binary Hamming
space because this is the case for which these ideas will be employed in Chapter 6.
The results developed in this section are primarily due to Kabatyanskii and Leven-
shtein [52] (the general case) and Dunkl [32] (the Hamming case). They are rooted
in the theory of special functions and harmonic analysis of non-commutative groups.

2.4.1 The isometry group of the binary Hamming space

A typical isometry of the binary Hamming space H = H(2,n) acts by a
permutation o of the coordinates followed by a translation by a fixed vector «, i.e.,
for c € H, (x,0)-¢c = x+0(c). Let us compute a composition of two such isometries.
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Suppose that
(z,7) = (%, 0)(y,7)

is applied to a vector ¢ € H. Considering the action (z,7) - ¢ it is easy to see that
m=o1 and z = & + o(y). In particular,

(T_l(y)> T_1>(y7 T) = (07 6),

where e is the identity permutation. Thus, the pairs (z,0),x € H,o € S, form
a group, called the semidirect product of the additive group H and the symmetric
group S,, and denoted G = H x S,. It is well known that G is the full isometry
group of the Hamming space. We note that G is not commutative (if it were, a
direct product would suffice to combine isometries from H and S,,).

Note that the action of G on H is transitive, i.e, for any @,y € H there exists
g € G such that y = ¢ - . Thus, H is a homogeneous space of the group G. Let
H be the subgroup of G that fixes the point 0, i.e., H = {(0,0),0 € S,}, H = S,.
We can realize H as the set of (left) cosets G/H by identifying a vector & with
the coset (x,e)H and writing H = G/H. This identification is consistent with the
group action. Indeed, if h = (0,0) € H and gH, g = (x,e) € G is the coset that
corresponds to a vector & € H, then

h(gH) = (o(),€)H.

An orbit of this action contains all the vectors obtained from @ after permuting its
coordinates, i.e., H(gH) = {&’ € H : wy(x') = wy(x)}. In other words, the set of
double cosets H\G/H represents the set of spheres 8 C H,k = 0,1,...,n, where
8k ={x € H(2,n) : wg(x) = k}. The spheres form a partition of H.

2.4.2 Decomposition of functions on the binary Hamming space

Consider the space L?(3H) of real “square-integrable” functions on 3, i.e. func-
tions f : H — R with the inner product

zeH

(1. f2) =

and the norm || f| = (f, f)*>. The group G acts on L?(H) by g - f(x) = f(g~"
x). Under this action the space L?(H) decomposes into a direct sum of pairwise
orthogonal irreducible subspaces

L*(H) = HyL--- LH,, (2.13)

where each Hj, is a subspace of functions invariant under the action of .S,,. This is a
classical result in harmonic analysis that for the Hamming case is discussed in detail
in [32, 85]. The dimension of the space Hy is (’;) An orthogonal basis of the space
Hj, is given by the functions ey j(x) = (—1)"1 % ¥ where 1 <i; < --- < i <n
is the j-th k-subset of [n] (under some numbering of such subsets).
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The analysis of the space L?*(H) is accomplished by studying functions on the
group G [32]. As above, let H be the stationary subgroup of the point &y, = O.
A real function ¢(g),g € G is called spherical with respect to H if it is constant
on a (left) coset of H, i.e., ¢(gh) = ¢(g) for all h € H. A spherical function can
be thought of as an element of the space L?(H). Under this approach the basis
{ekyj 0<kE<n1< < (Z)} is identified as the basis of spherical harmonics'.
Of particular interest are zonal spherical functions ¢y, i.e., functions constant on
double cosets H\G/H, and the associated zonal spherical kernels. It is known that
there exists a unique, up to a constant factor, zonal spherical kernel of degree k,
given by the expression

Z e (®)er;(y (2.14)

It is readily seen that Kj(x,y) is invariant under the action of H: for any permu-
tation o we have Ky(o - x,0 - y) = Ki(x,y). The corresponding zonal spherical
harmonic ¢ satisfies

or(highs) = ¢r(g), hi,ha € H, g€G.
Moreover, if g and g, are such that g, -0 =« and g, - 0 = y. then

Ki(2,y) = dr(9, " 92)-

Furthermore, the function K (x,y) can be easily seen to depend only on the Ham-
ming distance d(x, y) and thus becomes a univariate polynomial. It has the following

explicit expression:
k
T\ [(n—=x
iwin) =0 (7) (3 27): (2,19

i=0

where z is a “discrete” real variable. The polynomials Ky (z;n),k =0,1,...,n form
an orthogonal basis in the space of univariate polynomials of x with respect to the
weights w(i) = (:‘) 27" 4 =0,...,n. They form a particular case of Krawtchouk
polynomials well known in the theory of classical orthogonal polynomials [81]. Note
that this weight function is inherited from the inner product on L?*(H): the uni-
form probability distribution becomes binomial once we pass from functions of @ to
functions of . Consequently, the inner product on L?(JH) changes into

n

(fio f2) =Y w(i) f1(8) f2(0). (2.16)

1=0

Decomposition (2.13) implies that any polynomial f(z) of degree at most n can be
written as a Fourier series

Zfz xn fiER,

IThe term is inherited from functions on the sphere in R”.
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where f; = (f, K;) /(Ki, K;).

Remark: The group view in the last two sections applies to all association schemes
including the Johnson scheme and the ordered Hamming scheme, as well as to
infinite homogeneous spaces (see, for instance, Bachoc [8]).

2.4.3 Properties of the Krawtchouk polynomials

The binary case: Consider the space V,, of all real polynomials in one variable
x defined on {0,...,n}, and define the inner product between two polynomials
f(z),g9(x) on {0,...,n} as in (2.16). Let Kj(x;n) be the Krawtchouk polynomial
of degree k. It satisfies the orthogonality relation

(K, K;) = (Z) 5.

The normalized Krawtchouk polynomial is given by

ooy = Falzn)
()
and thus o
(Kk, Kj) = 0g;-

The Krawtchouk polynomials satisfy the following three-term recurrence relation

(n — 22) K (x;n) = ap Ky (2;0) + ap1 K1 (x;n). (2.17)

where a; = \/(n — k)(k + 1). We also have from (2.3)

Ki(z;n)K;(z;n) = Zﬁﬁjf(k(x;n), x=0,...,n, (2.18)
k=0

where the numbers ﬁi ; = 0 are related in an obvious way to the intersection numbers
of the Hamming scheme (Section 2.1). The k-th polynomial kernel (the Christoffel-
Darboux kernel) Ug(z, a) is defined as

Uk(x,a) = Zf(i(:v;n)f(i(a; n). (2.19)

=0

It has the following reproducing property: (Uy(-,a), f(-)) = f(a) for any polynomial

fdeg(f) < k.
Finally,

K, (0;n) = (Z) (2.20)
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The g-ary case, ¢ > 2: [t is possible to extend the considerations in this section to
the case of a g-ary Hamming space with arbitrary q. The corresponding Krawtchouk
polynomials have the following form:

Ky(z;n) = zk:(—ni(q — )k (‘f) <Z:f) k=0,1,...,n. (2.21)

=0

The value of ¢ will be clear from the context, so we keep the same notation. They
are orthogonal on {0,1,...,n} with weights (’Z)(q —1)ig™, i =0,...,n. We will
use the following properties of the polynomials Kj(x;n) whose proofs are found for

instance in [54]. Let x;(n, k), i = 1,...,k be the roots of Kj(x;n) in the ascending
order. Then

0<zin—1,k) <zi(n k) <az;(n—1,k—=1) <xiy(n,k—1) <xip1(n, k) <n,
l<k<n, i=1,.. k-1 (2.22)

Let n — o0, k/n — y. Then

Tim w =1(y) = P 5\/(q - Dy(1 —y). (2.23)

The polynomials Ky (z;n) satisfy the recurrence
Ki(z;n) = Kp(x;n — 1) + (¢ — 1) Ky (z;n — 1) (2.24)

and the Christoffel-Darboux formula

: n n
e =) 32 PG = S e ) s ).

(2.25)

Notes: The theory on association schemes is presented in detail in the works of
Delsarte [26], Bannai and Ito [9], and Brouwer, Cohen and Neumaier [23]. The Ham-
ming and the Johnson schemes were identified in [26] and were extensively studied
thereafter (see [9] or MacWilliams and Sloane [55]). The material on the ordered
Hamming scheme is a summary of the theory presented in Martin and Stinson [60].
The discussion on the Terwilliger algebra is an outline of the basic concepts from
Schrijver [74] and Vallentin [85]. The discussion on Krawtchouk polynomials in
Section 2.4 is a short summary of the general theory in Vilenkin [86] and in Ka-
batyanskii and Levenshtein [52]. Dunkl’s paper [32] treats the case of the Hamming
space in detail (see also Chapter 6). The properties of the univariate Krawtchouk
polynomials are present in MacWilliams and Sloane [55] and in Levenshtein [54].
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CHAPTER 3

Bounds on codes in the Hamming space

This chapter presents an overview of the methods used to derive the bounds on
the size of the codes in the binary Hamming space H = H(2,n). Even though this
setting is restrictive, the techniques are universal and have been used to address
similar problems in a vast range of metric spaces. The methods presented here
are classical in nature; however, their adaptation to different special cases requires
nontrivial extensions and computations. The study of various special cases continues
to this day [7, 10, 59], representing an established branch of coding theory.

Below, we provide only the bounds and techniques which are used in the later
chapters. In Section 3.1 we present the Gilbert-Varshamov bound, the Plotkin
bound, the Johnson bound, and the Bassalygo-Elias bound on the size of codes. In
Section 3.2 we discuss the linear programming (LP) bound.

None of the results in this chapter are new. The material in Section 3.1 can
be found in MacWilliams and Sloane [55]. The material in Section 3.2 draws on the
ideas of Bachoc [7] and can be found in Barg and Nogin [10].

3.1 Sphere-covering and averaging bounds

The main argument used in proving existence of large-size codes is given in
the following theorem.

Theorem 3.1 (Gilbert-Varshamov bound!) There exists a code C of size M
and minimum distance d in H provided

27L
M>————.
— d—1 (n
Zi:()l (z)
PrOOF: The proof proceeds by a greedy sphere covering argument. Pick ¢, € H
and let C = {¢}.

1. In the i-th step pick a point ¢;y; € H outside U'_, Bq_1(c;), where Bq_i(c;)
is a ball of radius d — 1 around ¢;. Let € = CU {¢;41}-

2. Increment ¢ by 1 and repeat the previous step till no such point ¢;11 € H
exists. -

I Although not quite accurate, this name is often associated with the technique presented here.
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Below we state some upper bounds (non-existence results) on the size of the code
C. Call the matrix whose rows are the codewords of € the codematriz of €.

Theorem 3.2 (Plotkin bound) Let € C H be an (n,M,d) code of size M and
minimum distance d. Then

2d
M <
~—2d—n’

PRrROOF: The proof proceeds by an averaging argument on all pairs of distances in
the code. The sum ) dp(u,v) is bounded in two ways, as shown below. First

2d > n.

u,veC

MM —1)d < ) du(u,v).

u,veC

Next, consider the M x n codematrix of €. Let ! be the number of ones in the I-th
column of the codematrix. Then

Z dy(u,v) = 22%(]\/[ — )

u,veC
nM?
< 5

where the inequality in the last step is obtained by maximizing over all 0 < v/} <
M,l=1,...,n. [ ]

The Johnson bound is an upper bound on the size of codes in the sphere §,,
of radius w in H. This bound is also proved by estimating the average distance in
the code. It is an analog of the Plotkin bound for the constant weight space S,,.

Theorem 3.3 (Johnson bound) Let C be an (n,M,d) code in S,. For any w <

n d
(- - ).

M < { dn J . (3.1)

— | dn — 2wn + 2w?

PROOF: Let v} be the number of ones in the I-th column of the M x n codematrix
of €. The total number of ones in the codematrix is Mw = ;" , v4. Then

MM —1)d < Y dy(u,v)
u,veC
= > wi(M - )
=1

M2
< —(2wn — 2w?),

n
where in the last step we maximize under the constraints 0 < v < M, [ =1,...,n,
and >_;", 1 = Mw. The condition on w in the theorem arises from the requirement
that the denominator be positive. [ ]
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Bassalygo-Elias bound: It is obtained by a conjunction of the “Bassalygo-Elias
inequality” and the Johnson bound. The inequality is stated in the lemma below.

Lemma 3.4 Let C be an (n, M,d) code in the Hamming space H, 8,, be a sphere
in H, and let A(n,d,w) denote the mazimum size of a code of minimum distance d
in 8. Then

M|S,| < A(n,d,w)2",

Proor: We have

dlC—2)n8ul=> Y 1((c—x)€8,) => > 1((c—z) € 8,) =[C][Su].
xeH xeH ceC ceC xzeXH

Since for every @, (€ — x) N §,, is a constant weight code, we have

STI(€ - =) N8| < 2°A(n, d, w).
xzeH

Combining the Johnson bound with this lemma, we obtain

Theorem 3.5 (Bassalygo-Elias bound) Let ¢ C H be an (n, M,d) code. For
anyw<g<1— 1—2—d>

n

2"dn
M < .
~ (dn — 2wn + 2w?)|8,,|

Let us find the asymptotic version of the Bassalygo-Elias bound. Let A(n,d)
be the maximum size of a code € € H of distance d. Let 6 = d/n be the relative
distance of the code and let

R(0) = limsup S log, A(n, [dn]).

n—oo n

be the asymptotic rate of the code. Let w = %(1 — /1= %d> — 1 . From the
Theorem 3.5 we obtain the following asymptotic upper bound:

1 1
R() <1-— h2<§ —5VI- 25),
where hs(+) is the binary entropy function. It is known that R(4) = 0 for § > 1/2
and R(0) = 1; otherwise the exact behavior of R(J) is unknown.

Remark: In Lemma 3.4 the set §,, can be replaced by any subset B C H. Then
on the right-hand side the quantity A(n,d,w) is replaced by the maximum size
of a code with distance d in the set B. Generally estimating this size is difficult,
which is why we state this lemma for B = §,,. In [77] 8,, is replaced with another
subset, resulting in an improvement to the Bassalygo-Elias bound on codes in the
non-binary Hamming space.
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3.2 Krawtchouk polynomials and the LP bound

3.2.1 The method

In the next section we apply the Delsarte method (Theorem 2.2) to derive
an improvement of the Bassalygo-Elias bound (Theorem 3.5). Our aim is to derive
the result of McEliece et al. [62] which uses the Delsarte method to prove the best
known asymptotic bounds on the size of a code. The proof method employed below
is different from the one used in [62]. It will be generalized for the case of the ordered
Hamming space in Chapter 5.

To derive a bound on the size M of the code we need to choose a polynomial
that satisfies the conditions of Theorem 2.2. Without loss of generality assume that
f(0) = 1. According to (2.6), we need to find a polynomial with the largest possible
value of the expectation Ef = 273" f(i)(7) = fo. Computing the stationary
point of the functional F f in some class of polynomials, one finds that on the space
Vi of polynomials of degree < k it is approximated by the Christoffel-Darboux
kernel Ug(z,a) (2.19) (see [12]). This approach is taken in [62] and many papers
after it. The derivation of the bound relies on the behavior of extremal roots of the
Krawtchouk polynomials.

If the polynomials involved in the LP bound are multivariate, the above ap-
proach becomes infeasible because we do not have control over the roots. For in-
stance, this is the case for the ordered Hamming space. The spectral method [7],
explained below, is a clever argument designed to circumvent this difficulty. It
proceeds by finding a linear operator on Vj for which Uy is an eigenfunction, and
then performing optimization on £ within the limits imposed by the conditions in
Theorem 2.2.

These ideas are illustrated in the next section to derive the bound on the code
rate [62] for . The purpose of this derivation, taken from [10], is to clarify the
ideas which may be obscured by substantial technical difficulties encountered for
the ordered Hamming space.

3.2.2 The bound

Let V. be the space of univariate polynomials of degree < k considered as
a subspace of the space V,, of polynomials on {0,1,... ,n} with the inner product
(2.16). Below we use regular letters to denote operators acting on V;, and bold letters
to denote their matrices in the basis {f(l} Let E} be the orthogonal projection from
V,, to V. Consider the operator

Sk:EkO(n—QZB)I Vk—>‘/;€,

i.e., multiplication by (n — 2z) followed by projection on V.

The argument that follows relies on the fact that the operator Sy is self-adjoint
with respect to the bilinear form (-,-). Indeed, both multiplication by a function
and the orthogonal projection are self-adjoint operators. Therefore, the matrix Sy
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is symmetric. Its explicit form is as follows:

[ 0 Qo 0 0
ag 0 ay 0

S —| 0 @ 0 0o |
0 ar—1

0 0 a1 0

where the coefficients a;,7 = 0,1,...,k — 1 are given by (2.17). The matrix Sy is
irreducible (see Definition A.1 in the Appendix). Hence by the Perron-Frobenius
theorem (see Theorem A.4) the matrix Sy has a unique positive maximum eigenvalue

)\maX(Sk’)-
Theorem 3.6 [10] Let C C H be an (n, M,d) code. Then

e i ()

for all k such that Ayax(Sg—1) > n — 2d.
PROOF: Let g = Zle g;K; € Vi. Consider the operator T}, : Vi, — Vj defined by
Trg = Skg — (n — k)gr Ky, (3.2)

and let 0 be its largest eigenvalue. Recall that T} is the matrix of this operator
in the basis {K;}. (T} is the same as Sy except that (Tg)ps1rr1 = —(n — k).) Let
us “shift” the matrix T; by a multiple of the identity matrix I to make all of its
elements nonnegative. For instance, we have Ty + (n —k)I > 0. By Lemma A.3 and
the Perron-Frobenius theorem,

)\max(Skfl) < ek < )\max(Sk)7

because the same inequalities hold for the largest eigenvalues of the shifted matrices.
Moreover, the eigenvalue 6, is of multiplicity one. Denote by f € V}. the eigenvector
that corresponds to it. By (2.17) and (3.2) we have

(n—2x)f =Suf+ fkak:f(kﬂ =0uf +(n— k?)fkf(k + frar Ky,

SO N .

f _ (n — k)Kk + CLkKk_H fk
n—2x — 0

Consider the polynomial F' = (n — 2x — 0))f* = ((n — /{:)f(k + akf(kﬂ)fkf. By

Theorem A.4, f can be chosen to have positive coordinates. Therefore by (2.18),

the coefficients of the expansion of F into the basis {K;} are nonnegative. Next, if
n — 2d < Apax(Sk—1) then F(z) <0 for x > d.

25



Since multiplication by f is a self-adjoint operator, we compute

Fy = <((n — k)f(k + akRkJrl)fkfa 1>

= <((n — k) Ky + ar Ky 11), f>

= (n—k)fi >0,
and )
. = W?j—e (")

Substituting a;, = v/(k + 1)(n — k) we find

F(0) = % (Z) = % (Z)

provided that Apax(Sk) < n. The claimed estimate is obtained by using the polyno-
mial F' in Theorem 2.2. [

Next we compute the asymptotic behavior of the largest eigenvalue.

Lemma 3.7 Let k <n/2. Foralls=2,...,k+1,

2(s—1)

Amax(Sk) > Vk—s+2)(n—k+s—1),

Amax(Sk) < 2v/k(n —k+1).
In particular, for n — oo, k/n — 7, and s = o(n),

lim /\max—(sk) =2/7(1 —71).

n—o00 n

The first inequality is obtained from Rayleigh-Ritz inequality (Theorem A.1) and
the second inequality results from Lemma A.2.

Theorem 3.6 and Lemma 3.7 together lead to the following asymptotic result
(the asymptotic MRRW bound for binary codes [62]):

R < hy(Y2— /3(1—0)).

Indeed, let limsup,, ., %log2 M = R, limn_m% = § and assume that 6 < 1/2. We
need to choose k so that n™ " A\pax(Sk_1) > (1—26)(1+0(1)) as n — oo. In the limit,
this amounts to taking 7 that satisfies 24/7(1 —7) > 1—26, or 7 > 1/2—+/0(1 — §).
The result now follows by the Stirling approximation.
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CHAPTER 4

NMDS codes in ordered Hamming space

In this chapter we study a class of near-optimal codes in the ordered Hamming
space, called near-Maximum Distance Separable (NMDS) codes. A Maximum
Distance Separable (MDS) code in the Hamming space is a set of vectors € =
{e1,...,ep} in H(g,n) such that the minimum distance is d and the size of the
code is M = ¢"~%*1. By the well-known Singleton bound of coding theory, this is
the maximum possible number of points with the given separation d. If € is an MDS
code that forms an F,-linear space of dimension k, then the parameters n, k, d, of
the code satisfy the relation d = n — k + 1. MDS codes are known to be linked to
classical old problems in finite geometry and to a number of other combinatorial
questions related to the Hamming space [73]. At the same time, the length of MDS
codes cannot be very large; in particular, in all the known cases, n < ¢ + 2. This
restriction has led to the study of classes of codes with distance properties close to
MDS codes, such as ¢-th rank MDS codes [87], NMDS codes [28] and almost-MDS
codes [22]. The distance of these codes is only slightly less than n—k+ 1, and at the
same time they still have many of the structural properties associated with MDS
codes.

MDS codes have been extended to the ordered Hamming space, and their
properties are well understood [72, 47, 78]. In this chapter we extend the study
of NMDS codes to the ordered Hamming space. As observed by Skriganov [78],
MDS codes correspond to distributions of points in the unit cube. In particular,
distributions that arise from MDS codes are optimal in some well-defined sense.
In the same way, NMDS codes correspond to distributions that are not far from
optimal (they are characterized exactly in Section 4.2 below).

The ordered Hamming metric is an example of a wide class of distance func-
tions on strings called the poset metrics [24]. We present our results for this general
case because this requires only a small additional effort.

We begin with a review of the definition and properties of the poset metric in
the next section. This section also includes elements of the theory of linear codes in
the poset space that we derive following the approach in the usual Hamming space.
After this we define linear NMDS codes over a finite field alphabet F, in the poset
metric and derive some of their properties. In Section 4.2 we establish a relation
between NDMS codes and distributions in the unit cube. Section 4.3 is concerned
with the derivation of the weight distribution of NMDS codes. Finally, in Section
4.4 we provide some constructions of NMDS codes in the ordered Hamming space.
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Publications: The results of this chapter appear in [15, 16].

4.1 Definitions and basic properties

4.1.1 Poset metrics

We begin with defining poset metrics on g-ary strings of a fixed length and
introduce the ordered Hamming metric as a special case of the general definition.
Entries of a string @ = (z1,29,...) are indexed by a finite set [n] = {1,...,n}
which we call the set of coordinates. Let P be an arbitrary partial order (<) on [n].
Together [n| and P form a poset. An ideal of the poset is a subset I C [n] that is
“downward closed” under the < relation, which means that the conditions i, j € [n],
7 € I and ¢« < j imply that ¢ € I. For the reasons that will become clear below,
such ideals will be called left-adjusted (l.a.).

A chain is any linearly ordered _s)ubset of the poset. The dual poset (5 is the
set [n] with the same set of chains as P, but the order within each of them reversed.
In other words j < 7 in P if and only if 7 < j in P. An ideal in the dual poset

will be termed right-adjusted (r.a.). For a subset S C P we denote by (S) = (S)3

— —
the smallest P-ideal containing the set S (we write S C P to refer to a subset

ﬁ
S C [n] whose elements are ordered according to P ). The support of a sequence x
is the subset supp  C [n] formed by the indices of all the nonzero entries of . The

set (suppx) C ? will be called the l.a. support of . The r.a. support is defined
analogously.

Definition 4.1 (Brualdi et al. [24]) Let P be a poset defined on [n] and let z,y € F}

é
be two strings. Define the weight of @ with respect to P as w(x) = |(supp x)|, i.e.,
H

the size of the smallest P -ideal that contains the support of . The distance between
x and y is defined as dz(x,y) = w(z —y) = |(supp(z — y))|.

A code € of minimum distance d is a subset of Fy such that any two distinct
vectors & and y of € satisfy dz(x,y) > d. It is similarly possible to consider codes

whose distance is measured relative to ? Given a linear code € C IF;‘ its dual code
Gt is the set of vectors {y € F} : Ve € C 1", ciy; = 0}. The weight of the dual

code Gt is considered with respect to the dual poset ; If € has dimension k then
G+ has dimension n — k.
A subset of Fy is called an orthogonal array of strength ¢ and index ¢ with

respect to ? if any t l.a. columns contain any vector z € F g exactly 6 times. In
particular, the dual of a linear poset code is also a linear orthogonal array.

For instance, the Hamming metric is defined by the partial order P which is
a single antichain of length n (no two elements are comparable). Accordingly, the
distance between two 0 sequences is given by the number of coordinates in which they

differ. In this case, fP = iP
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The ordered Hanzning metric, which is introduced in Chapter 2, page 12, can
be defined by a poset P which is a disjoint union of n chains of equal length r. We
recall that a vector (sequence) is written as © = (Z11,...,Z155 - Tnly .-, Tny) €
Fy". According to Definition 4.1, the weight of @ is given by (see also Definition
2.3)

w,(x) = Zmax{j s xy; # 0}

If e is the shape of  then the weight is equivalently written as w,(x) = |e|’. For
I = (suppx) we will denote the shape of the ideal I as shape(I)= e. By analogy
with the properties of ideals in the ord_e>red Hamming space, we use the term “left-
adjusted” for ideals in general posets P.

Recall that a linear ordered code € C Fp" with parameters [nr,k,d] is a
linear subspace of dimension k£ and minimum ordered disgmce d. The dual C* of a
linear code has its distance derived from the dual order P, i.e., from r.a. ideals in
f‘J_-C(q, n,r).

The notion of orthogonal arrays in the ordered Hamming space is derived
from the general definition given above. As mentioned in Section 2.2 they are called
ordered orthogonal arrays (OOAs). We write (t,n,r,q) OOA for an orthogonal array
of strength ¢ in Fy-".

4.1.2 NMDS poset codes

We begin our study of NMDS codes in the poset space with several definitions
that are generalized directly from the corresponding definitions in the Hamming
space [87, 28]. The t-th generalized poset weight of a linear [n, k] code € is defined
as

d;(C) £ min{|(supp D)| : D is an [n, ] subcode of C},

where supp D is the union of the supports of all the vectors in D. Note that
d;1(C) = d, the minimum distance of the code €. Generalized poset weights have
properties analogous to the well-known set of properties of generalized Hamming
weights. Below we denote the (n — k) x k parity check matrix (whose rows are the
n — k basis vectors of C1) of € by H, and we denote the generator matrix (whose
rows are the k basis vectors of C) of € by G.

Lemma 4.1 Let C be a linear [n, k] poset code in Fy. Then
1. 0 < di(C) < do(C) < -+ < di(C) < m.
2. Generalized Singleton bound: dy;(C) < n —dim(C) +t, Vt> 1.
3. If @ is the dual code of © then
{di(€),d2(C),...,dx(C)}U (n+1—{di(Cr),ds(C"),...,dnr(C")}) = [n].

4. H is the parity check matriz of € with d;(C) = 0 if and only if
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(a) Every 6 — 1 La. columns of H have rank at least 6 —t.
(b) There exist 6 l.a. columns of H with rank exactly § — t.

PROOF:

1. Let D; C € be a linear subspace such that |(supp D;)| = d;(C) and rank(D,) =
t, t > 1. Let Q(D,) denote the maximal elements of the ideal (supp D;). For
each coordinate in (D), D, has at least one vector with a nonzero component
in that coordinate. We pick i € Q(D;) and let D! be obtained by retaining
only those vectors v in D; which have v; = 0. Then

d;—1(€) < |(supp Dj)| < dy(C) — 1.
2. This is a consequence of the fact that d; 1 > d; + 1 and di < n.

3. This proof is analogous to [87]. The reason for giving it here is to assure
oneself that no complications arise from the fact that the weights in Gt are
measured with respect to the dual poset.

We show that for any 1 < s<n—k—1,
n+1—dy(CY) ¢ {d.(C):1<r <k}

Let t = k + s — dy(C*). We consider two cases (one of which can be void),
namely, r <t and r > ¢ + 1 and show that for each of them, n + 1 — d,(C1) #
d,(C).

Take an s-dimensional subcode D, € € such that |(supp D,)5| = ds(C*).
Form a parity-check matrix of the code C whose first rows are some s linearly
independent vectors from Dg. Let D be the complement of (supp D;) in the
set of coordinates. Let the submatrix of H formed of all the columns in D
be denoted by H[D]. The rank of H[D] is at most n — k — s and its corank
(dimension of the null space) is at least

ID|—(n—k—38)=n—d,(CY) —n+k+s=Fk+s—d,(Ch).
Then d;(C) < |D| = n — d,(Ct) and so d,(€) <n —dy(C), 1 <r < t.
Now let us show that dyy;(€) # n + 1 — d,(€*) for all 1 <i < k —t. Assume
the contrary and consider a generator matrix GG of C with the first ¢ + ¢ rows
corresponding to the subcode D;y; € € with [(supp Dyyi)5| = di14(C). Let
D be the complement of (supp D,;;) in the set of coordinates. Then G[D]
is a k X (n — dyy;(C)) matrix of rank k — t — i. By part 2 of the lemma,
n—dii(C) >k —t—1,s0
dimker(G[D]) >n —di4(C) — k+t+1i

=s+i— (ds(CT) +n—d4(C))

=s+i—1,
where the first equality follows on substituting the value of k£ and the second
one by using the assumption. Hence dyy; 1(Ct) < |D| = dy(Ct) — 1, which
contradicts part 1 of the lemma.
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4. Follows by standard linear-algebraic arguments. [ ]
Definition 4.2 A linear code C[n, k, d] is called NMDS if d(C) = n—k and d2(C) =
n—k+2.

Closely related is the notion of almost-MDS code where we have only the
constraint that d(€) = n — k and there is no constraint on dz(€). In this chapter,
we focus only on NMDS codes. The next set of properties of NMDS codes can be
readily obtained as generalizations of the corresponding properties of NMDS codes
in the Hamming space [28].

Lemma 4.2 Let C C F} be a linear [n, k,d] code in the poset P
1. Cis NMDS if and only if all the following conditions hold

(a) Every n —k — 1 l.a. columns of the parity check matriz H are linearly
independent.

(b) There exist n — k l.a. linearly dependent columns of H.
(c) Every l.a. n—k+ 1 columns of H are full ranked.

2. If C is NMDS, so is its dual C*+.
3. Cis NMDS if and only if d(C) + d(Ct) = n.

4. If € is NMDS then there exists an NMDS code with parameters [n—1,k—1,d]
and an NMDS code with parameters [n — 1,k,d].

PROOF:

1. Any linear code € has minimum distance d = n — k if and only if parts (a)
and (b) hold. Part (c) follows from Lemma 4.1.

2. From Lemma 4.1 we obtain
n+1—-dCH,1<t<n—k}={1,....n—k—1,n—k+1}.
Hence d(Ct) = k and dp(Ct) = k + 2.
3. Let d(€) + d(Ct) = n. Then
dy(CH) > d(CH) +1=n—d(C) + 1,
but then by Lemma 4.1, part 3, d2(Ct) > n — d(€) + 2. Next,
n>d, 1 (CH) >dy(CH) +n—k—2>2n—k—d,

which implies that d > n—Fk. This leaves us with the possibilities of d = n—Fk or
n —k+1, but the latter would imply that d(C) +d(€t) =n+2,s0d =n—k.
Further, do(€) > n — d(€t) +2 = n — k + 2, as required. The converse is
immediate.
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4. To get a [n — 1,k — 1,d] NMDS code, delete a column of the parity check
matrix H of € preserving a set of n — k l.a. linearly dependent columns. To
get a [n— 1, k,d] NMDS code, delete a column of the generator matrix G of €
preserving a set of k+ 1 r.a. columns which contains k r.a. linearly dependent
columns. |

Lemma 4.3 Let C be a linear poset code in ? with distance d and let C+ be its dual
code. Then the matriz M whose rows are the codewords of C+ forms an orthogonal

H
array of strength d — 1 with respect to P.

PROOF: Follows because (1), C* is the linear span of the parity-check matrix H of
C; and (2), any d — 1 l.a. columns of H are linearly independent. [

4.2 NMDS codes and distributions

In this section we prove a characterization of NMDS poset codes and then use
this result to establish a relationship between NMDS codes in the ordered Hamming
space ﬁ)(q, n,r) and uniform distributions of points in the unit cube U™ = [0, 1)".
In our study of NMDS codes in the following sections, we analyze the properties of
the code simultaneously as a linear code and as a linear orthogonal array.

Define the I-neighborhood of a poset code € with respect to an ideal I as

Bi(€) = Bilo),

ceC

where Br(x) = {v € F} : supp(v — x) C I}. We will say that a linear k-dimensional
code € forms an [-tiling if there exists a partition € = €; U --- U Cp-1 into equal
parts such that the I-neighborhoods of its parts are disjoint. If in addition the
I-neighborhoods form a partition of Iy, we say € forms a perfect I-tiling.

Theorem 4.4 Let C CFy be an [n, k,d] linear code in the poset P € is NMDS if
and only if

1. For any I C ?, |I| =n —k+1, the code C forms a perfect I-tiling.

2. There exists an ideal I C ?, |I| = n — k with respect to which C forms an
I-tiling. No smaller-sized ideals with this property exist.

PRrROOF: Let € be NMDS and let I be an ideal of size n — k + 1. Let H[I] be the
submatrix of the parity-check matrix H of € obtained from H by deleting all the
columns not in /. Since rank(H|[I]) = n — k, the space ker(H|[I]) is one-dimensional.
Let €, = ker(H|[I]) and let €; be the jth coset of €; in €, j = 2,...,¢"!. By
P_emma 4.3 the code € forms an orthogonal array of strength £ — 1 and index ¢ in
P . Therefore, every vector z € F’;_l appears exactly ¢ times in the restrictions of
the codevectors ¢ € € to the coordinates of J = I°. Thus, ¢'[J] = €"[J] for any two
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vectors ¢,¢” € C,i =1,...,¢" T and [J] # '[J] ¢ € C;," € €;,1 <i<j<
¢"*~'. This implies that € forms a perfect I-tiling, which proves assumption 1 of the
theorem. To prove assumption 2, let ¢ be a minimum-weight codeword of € and
let I = (supp(c)),|[I| =n —k. Let €; = {ac: a € F;} and let Cy,...,Cp—1 be the
cosets of C; in €. Then € = U;C; forms an /-tiling of Fy.

To prove the converse, let I C ?, |I| = n—k+1Dbeanideal and let Cy, ..., Cpr
be a partition of € with |C;| = ¢ for all ¢, that forms a perfect [—tiling. This implies
that ¢'[I°] # ¢"[I], ¢ € €;,¢" € €;,1 < i < j < ¢"'. In other words, € forms an
orthogonal array with respect to P of index q and strength k£ — 1. We conclude that
d(€t) = k or k+1. If it is the latter, then Ct is MDS with respect to P and so is €

é
with respect to P, in violation of assumption 2. So d(€+) =k and d(€) < n — k. If
the inequality is strict, there exists an ideal I of size < n — k that supports a one-
dimensional subcode of €. Then € forms an [-tiling which contradicts assumption
2.
[t remains to prove that ds(C) = n—k+2. Assume the contrary, i.e., that there

H
exists a 2-dimensional subcode B C € whose l.a. support forms an ideal I C P of
size n — k + 1. The ¢* vectors of B all have zeros in ¢ which contradicts the fact
that € forms an orthogonal array of index gq. [ ]

Next, we use this characterization to relate codes in the ordered Hamming

H
space H(q,n,r) to distributions. An idealized uniformly distributed point set €
would satisfy the property that for any measurable subset A C U™,

1
@ D 1(c € A) = vol(A).
ceC
Distributions that we consider, and in particular (¢, m,n)-nets, approximate this
property by restricting the subsets A to be boxes with sides parallel to the coordinate
axes.
Let

g2 {H {a_l—ajlq) :Ogai<qli,0§li§r,1§i§n}
- L4 1

be a collection of elementary intervals in the unit cube U™ = [0,1)". An arbitrary
collection of ¢ points in U™ is called an [nr, k] distribution in the base ¢ (with
respect to €). A distribution is called optimal if every elementary interval of volume
q " contains exactly one point [78]. The related notion of (t,m,n)-nets, introduced
by Niederreiter [67], is obtained if we remove the upper bound on [; (i.e., allow that
0 < I; < 00) and require that every elementary interval of volume ¢'~™ contain
exactly ¢! points.

An ordered code gives rise to a distribution of points in the unit cube via the

ﬁ
following procedure. A codevector ¢ = (¢11,...,C1p; - ;Cn1y- -+, Cnr) € H(g,m,7) is
mapped to & = (z1,...,x,) € U™ by letting

xr; = ZCijqjiTil, 1< <n. (41)
j=1
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In particular, an (m — t,n,r,¢q) OOA of index ¢’ and size ¢™ corresponds to a
distribution in which every elementary interval of volume ¢~ contains exactly ¢
points. OOAs are related to (¢, m,n)-nets by the following theorem.

Theorem 4.5 (Lawrence [51], Mullen/Schmid [63]) There exists a (t,m,n)-net if
and only if there exists an (m —t,n,m —t,q) OOA of index q* and size M = ¢™.

The relation between ordered MDS codes and optimal distributions was established
by Skriganov, as shown in the following theorem.

Proposition 4.6 (Skriganov [78]) An [nr,k,d] MDS code in the ordered metric
exists if and only if there exists an optimal [nr, k| distribution.

Skriganov [79] also considers the concept of nearly-MDS codes whose distance asymp-
totically tends to the distance of MDS codes, and shows how these codes can give
rise to distributions.

The next theorem whose proof is immediate from Theorem 4.4 relates ordered
NMDS codes and distributions.

Theorem 4.7 Let C be a linear [nr,k,d] code in ﬁ(q,n,r) and let P(C) be the
corresponding set of points in U™. Then C is NMDS if and only if

k-1

1. Any elementary interval of volume ¢~ *~Y) has exactly q points of P(C).

2. There exists an elementary interval [];_, [O,q_li) of volume ¢~ % containing
exactly q points and no smaller elementary intervals of this form containing
exactly q points exist.

Corollary 4.8 An [nr,k,d] NMDS code € in the ordered Hamming space forms a
(k—1,n,r,q) OOA of index q. The corresponding distribution P(C) C U™ forms a
(k—r, k,n)-net for k—1>r.

Remark: Distributions of points in the unit cube obtained from NMDS codes
have properties similar to those of distributions obtained flgm MDS codes. In
particular, the points obtained from an [nr, k, d] MDS code in H (g, n, r) satisfy part
1 of Theorem 4.7 and give rise to a (k — r, k, n)-net for k > r [78].

4.3 Weight distribution of NMDS codes

In this section we determine the weight distribution of NMDS codes. We will
first determine the weight distribution for poset NMDS codes and then specialize to
the ordered NMDS codes.

Let Q(I) be the set of maximal elements of an ideal I and let [ 2 I\ Q(I).
Let @ be an NMDS [n, k, d] linear poset code. Let A; =2 {c € C: (suppe) = I} be
the number of codewords with l.a. support exactly I and let A, = ZH”:S Ar.
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Theorem 4.9 The weight distribution of € has the following form.:

_ Z _Z_ (_1)Z(|Q(l])|) (qsfd—l s dz Z Ay, n>s>d,

1€ jedy(n),J21

(4.2)
where J4, = Q?:Izs and I,(1) & {J:JC1,|J| =s).
here J, 2 {1

ProOOF: The computation below is driven by the fact that ideals are fixed by the
sets of their maximal elements.

The number of codewords of weight s is given by As = | Ujeg, € N S|, where
S & {x ¢ [y (suppx) = I} is the sphere with La. support exactly I. The above
expression can be written as

‘Uems,):z<|em3;y—| U emB*
where By £ {& € F? : (suppx)z C I} and Bj £ B;\ 0. We determine the

Ieds 1€Js JeTs—1(
P

cardinality of the last term using the inclusion-exclusion principle.
‘ U emB* = > [enBl- ) lenB;nB,|+--

JeTs_1( JeJs_1(I) J1#J2€Ts_1(I)
en (N 5:) ’

+ (—1)ledi=t Z

Ji##Ed o) €ds—1(1)

Since G+ has minimum distance k, € forms an orthogonal array of strength k—1 with

H
respect to the dual poset P . This provides us with an estimate for each individual
term in (4.3) as described below. For distinct Jy,...,J; € J,_i(I), welet J = N'_, J;.
Using the fact that J does not contain [ maximal elements of I, we get

o1
{0 s s distinet, J; €9, 4(1),0 =1, 1} = (I (z )|>‘

For any s > d + 1 consider the complement I¢ of an ideal I € J,. Since |I¢] <
n—d—1=k—1, the code € supports an orthogonal array of strength n — s and
index ¢°~? in the coordinates defined by I¢. Since ﬂﬁlef}i = B3 and since B does
not contain the 0 vector, we obtain

l
‘Gm(ﬂBj}i)’:qS*d*l—l, 1<I<s—d—1.
i=1

Finally, for [ = s — d we obtain |CN (NL_, B} )| = A,, and
s—d—1

U eN BJ Z ( 1)l—1 (‘Q(ZIN) <qs—d—l _ 1) + Z (_1>s—d—1AJ7

J€Js1(1) =1 J€Iq(1),J21
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Light gray region: ideal J of shape e.
Light gray + Dark gray region: ideal I of shape f.

Figure 4.1: To the proof of Corollary 4.10

which implies
Z ’G N SI’ = Z ((qsd _ 1) . ( _Z_ (_1)171 (|Q(ll)|) (qsfdfl _ 1)

1€ 1€7; =1
+ (—1)Sd1AJ)>. | ]

Jedq(I),JDI

As a corollary of the above theorem, we obtain the weight distribution of
NMDS codes in the ordered Hamming space H(q,n,r). By definition, the number

—

of vectors of ordered weight s in a code € € H(gq,n,r) equals A, = ZezW:s A,
where A, is the number of codevectors of shape e.

Corollary 4.10 The weight distribution of an ordered NMDS code C C 9—{>(q,n,7’)
s given by

s 1

A=Y ey (N, ") e

=0 e:lel’=s

e:le|’=d
where
w02 3 () (e n o) (0 0)
@ 2 i\t teran) \n-u
PROOF: Recall that the shape of an ideal I is shape(l) = e = (eq,...,e,), where
ej,j = 1,...,r is the number of chains of length j contained in /. We obtain
2(1)[ = |e| and
QN _ e n
(") -2 ()00
IeTs e:le/'=s
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To determine the last term in (4.2), we rewrite it as

Y Ay=D {IedICTCTIA,

I€3s Jegy(1),J21 J€eJq
== E Ns(e) E AJ,
e:lel’=d J:shape(J)=e

where Ny(e) = |{I € J,: I C J C I, J fixed, shape(J) = e}|.

Clearly, > Jishape(J)—e Ay = A., and so we only need to determine the quantity
N;(e) in the above summation. Let J be an ideal as shown in Fig. 4.1. The ideals [
which satisfy the constraints in the set defined by Ng(e) have the form as shown in
Fig. 4.1. Letting f = shape(/), we note that the components of the shape f must
satisfy

fr > e,
fr + frfl 2 Er —|—€7«,1 2 fr;

fib et fom U2l mer b be > fob oot fu
and |f|" = s.

It is now readily seen that the cardinality of the set
{I€d,:1CJCI,J fixed, shape(J) = e}
is given by the formula for Ng(e) as described in (4.4). u

Remark: For 7 = 1 we obtain |e| = |e| = e; = d,|f| = fi = s and Ny(e) = ("_9).
Thus we recover the expression for the weight distribution of an NMDS code in

Hamming space [28]:

A=Yy () ()t =ns (P2 @)

1=0

Unlike the case of poset MDS codes [47], the weight distribution of NMDS
codes is not completely known until we know the number of codewords with l.a.
support J for every ideal of weight J of size d. In particular, for NMDS codes in
the ordered Hamming space we need to know the number of codewords of every
shape e with |e|" = d. This highlights the fact that the combinatorics of codes in
the poset space (resp. ordered Hamming space) is driven by ideals (resp. shapes)
and their support sizes, and that the weight distribution is a derivative invariant of
those more fundamental quantities.

As a final remark we observe that, given that d(C) = n — k, the assumption
d(€1t) =k (or the equivalent assumption dy(€C) = n — k + 2) ensures that the only
unknown components of the weight distribution of € correspond to ideals of size d. If
instead we consider a code of defect s, i.e., a code with d(€C) = (n—k+1)—s, s > 2,
it will be possible to compute its weight distribution using the components A;, d <
|J| < n—d(€t) (provided that we know d(C1)). In the case of the Hamming metric
this was established in [35].
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4.4 Constructions of NMDS codes

In this section we present some simple constructions of NMDS codes in the
ordered Hamming space for the cases n = 1,2,3. We are not aware of any general
code family of NMDS codes for larger n.

n=1: For n = 1 the construction is quite immediate once we recognize that
an NMDS [r, k,d] code is also an OOA of r.a. strength & — 1 and index ¢. Let I,
denote the identity matrix of size I. Let @ = (x1, ..., z,) be any vector of La. weight
d=r—k,ie. zg#0and x; =0, =d+1,...,r. Then the following matrix of size
k x r generates an NMDS code with the above parameters

{xl...xd 0 0 (4.6)

M 0 [ |’
where the Os are zero vectors (matrices) of appropriate dimensions and M € Iﬁ‘ék_l)Xd
is any arbitrary matrix.

0.1
n=2: Let D; = [ } be the [ x [ matrix with 1 along the inverse diagonal
i.0

and 0 elsewhere. Let u and v be two vectors of length r in ﬁ(q, 1,7) and lLa. weights
r — ky and r — ko respectively and let K_>: k1 + ko. The following matrix generates
a [2r, K, 2r — K] linear NMDS code in H(q, 2,7),

U oo Up—fy—1 Up—ky 0 0 V.. Up—kg—1 Up—ky 0 0
0 0 1 O 0 0 1 0
0 0 0 Iy 1| Eki,ks) 0 0 0 |°
E, (o, ky) 0 0 O 0 0 0 [

where E,.(i,j) is an (i — 1) x (r — j — 1) matrix which has the following form:

/' -

Drfjfl

] : i+j >,
Oi j—7) X (r—7—
E’r(l,j) — L (+.7 )X( J 1)

\ O(i—1)x(r—i—j) ‘ D;_y ] , Lty

From the form of the generator matrix it can be seen that any K —1 r.a. columns of
the above matrix are linearly independent. But the last k1 and ks columns from the
first and the second blocks respectively are linearly dependent. This implies that
it forms an OOA of r.a. strength exactly K — 1. Hence the dual of the code has
distance K. Finally, the minimum weight of any vector produced by this generator
matrix is 2r — K. Hence by Lemma 4.2, this matrix generates an NMDS code.
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n=3:

zero vector.

V1...V0—¢ Ur_p

Wy ... Wr—g Wyr_5

0

oo oo
_— o O O

39

Up—g Up_3 Ur_2
0 0 0
1 0 0
0 0 0
1 0 0
0 1 0
Ur—4 Up_3 Up_2 0
0 0 0 1
1 0 0 O
0 1 0 0
1 0 0 O
0 0 0 O
Wr—g4 Wr_3 Wr_2
1 0 0
0 0 0
1 0 0
0 1 0
0 0 0

O OO = = O

O OO OO = HEHOOOoOOo

O == O OO

Eor n = 3, we have an NMDS code with very specific parameters. Let
u,v,w € H(q,1,r) be three vectors of l.a. weight r — 2 each. Then the matrix
shown below is the generator matrix of a [3r, 6, d] code in base ¢ > 3. It is formed of
three blocks, corresponding to the three dimensions given by n. Here 0 is a 1 x (r—6)

_ o = O O O




CHAPTER 5

Bounds on ordered codes and orthogonal arrays

This chapter is devoted to_> the derivation of new upper bounds on codes €
in the ordered Hamming space H(q,n,r). The duality between ordered codes and
ordered orthogonal arrays (OOAs) (Section 2.2) and the relation between OOAs and
(t,m,n)-nets (Theorem 4.5) imply that upper bounds on codes translate into lower
bounds on OOAs and (¢, m,n)-nets. Lower bounds on (¢,m,n)-nets are of interest
because of their use in determining the error of numerical integration of functions
on the unit cube [67]. In particular, given the error of integration, we require the
function to be sampled at as few points as possible. Lower bounds on (¢, m, n)-nets
provide limits on the minimum possible size of the set of sampling points.

Aside from the application to numerical integration, the ordered Hamming
space has applications to wireless fading channels [40, 82], linear complexity of
sequences [61] and to list decoding of Reed-Solomon codes [65]. Thus, bounds
on the size of codes are of interest in determining the maximum size of the code
that can be achieved given the minimum distance. If ¢ grows with n then the
exact asymptotic tradeoff between the size and the minimum distance of the code
is given by the Singleton bound [72]. Several bounds are known for the (more
interesting) case of fixed ¢, see [72, 19, 57]. Addressing this case, we prove a new
upper estimate on codes for the ordered Hamming space. We also establish two
asymptotic bounds obtained via the method of linear programming, in the context
of association schemes (Sections 2.1-2.2). These new bounds provide the best known
asymptotic estimates on the size of ordered codes and OOAs.

The known bounds on codes are presented in Section 5.2. After that we prove
our first new result, a Bassalygo-Elias bound on codes. Section 5.3 is devoted to
properties of multivariate Krawtchouk polynomials which correspond to the eigen-
values of the ordered Hamming scheme (see Section 2.2). A universal bound on
codes is proved in Section 5.4 (here we employ the spectral method of Section 3.2).
In Section 5.5 we establish another new bound by studying the location of extremal
roots of certain bivariate Krawtchouk polynomials.

Publications: The results of this chapter are published in [11, 14].
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5.1 Introduction

We recall some basic definitions from Section 2.2. Let Q = {0,...,¢— 1} be a
- =

finite alphabet. A vector x in the ordered Hamming space H = H(q, n,r) is written
as n blocks of r elements each: & = (x11,...,%1,;...;%p1, ..., Tpy). The weight of x
is given by w,.(x) = |e|" where e = shape(x) is the shape of the vector.

Any subset € C H is called an ordered code. A code € of size M and minimum
distance d is called an (nr, M, d) code. If € is a linear subspace of dimension k, then

we write the parameters of the code as [nr k,d]. If € C H is a linear code of
dimension k, then the dual code C* is a subspace of T ﬁ(q,n,r) of dimension
n — k. An OOA of strength ¢ in H is denoted by (t,n,r,q). By Theorem 4.5, any
(m —t,n,m —t,q) OOA corresponds to a (t,m,n)-net. If € C H is a code of

minimum distance d, then C* is also an OOA of strength d — 1 in ﬁ

The valencies ve, e € A,,,, of the ordered Hamming scheme are given in (2.8).
Valency v, is also the cardinality of the sphere S, that consists of all vectors of shape
e. The cardinality of the sphere of weight d equals

Sd: Z Ve.

e:lel’=d

The asymptotic volume of the sphere of radius d was determined by Rosenbloom
and Tsfasman [72] as described below. Let A(z) = (¢ — 1)z(2" — 1)/(¢(z — 1)) and
let zg = 2o(x) satisfy the equation

-1
xr(l+ A(z S Z iz’ (5.1)
Define the function
1
Hq,r(w) = .’I?(l - logq ZO) + ; logq(l + A(ZO))
In the case r = 1 we write h,(x) instead of H,;(z), where
he(z) = —xlog, % — (1 —x)log,(1 — )

is the usual g-ary entropy function. Let

—1
crlt =1-- Z q_Z q (52)

rq" q—l

The asymptotic volume of the sphere of weight d in ﬁ) is given in the next lemma.
Lemma 5.1 (Rosenbloom and Tsfasman [72])

1. For 0 <z <1, equation (5.1) has a unique positive root zy(x) € [0, r].
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2. Letr > 1 be fixzed, n — oo,d/n — 1, then

d
lim (nr)~"log, Z S; =

H < < .
{ qﬂn((S), O ~ (S ~ (Scmt, (53)
=0

17 5cm't <90 S 1.

The asymptotic volume of the sphere 8. of shape e depends only on the asymptotic
behavior of |e|’/n.

5.2 Bounds on ordered codes and OOAs

In this section we recall the known bounds on ordered codes and OOAs and
derive a new bound on the size of codes.
5.2.1 Existence bounds

A bound analogous to the Gilbert-Varshamov bound of Theorem 3.1 is given
in the next theorem.

Theorem 5.2 [72] There exists an (nr, M, d) code in the space H whose parameters
satisfy

d—1
i=0
If Q is a finite field, then there exists a linear code with the same parameters.

A slightly better result can be proved if we assume that the code is linear [17].

Theorem 5.3 [17] Suppose that m and t satisfy the conditions
t—T
Z Simo1 < g™ TV =1, t-1
i=0

H
Then there exists an [nr,nr—m)] linear code in H of distance > t+1, and a (t,n,r, q)
H
linear OOA in H of dimension m.

5.2.2 Nonexistence bounds

While in general bounds on codes do not imply lower bounds on OOAs, there
are two special cases Whgl these two types of results are equivalent. First, if € is an
[nr, k,d] linear code in H then the code €' :=={y e H:VeceC Y7 ¢y =0} is
a (d—1,n,r, q) linear OOA in . Next, if an upper (resp. lower) bound on codes
(resp. OOAs) is obtained by linear programming as explained in Chapter 2 then
the same solution of the LP problem gives a lower (resp. upper) bound on OOAs
(resp. codes).

We next mention some upper bounds on codes and lower bounds on OOAs.
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Singleton bound [72]: The parameters of any (nr, M, d) code satisfy

M < qm"fd+1

Plotkin bound: A Plotkin bound on codes was established in [72]. Namely, the
following result holds true.

Theorem 5.4 [72] Let C C ﬁ be a code of size M and distance d > nrd..;. Then
d
M ——.
T d— nrécrit
A dual Plotkin bound on OOAs was proved by Martin and Visentin [59].
Theorem 5.5 [59] Let C be a (t,n,r,q) OOA. If t > nro.u — 1 then

N nrécrit)

el > "’”(1
€= q Pt 1

Hamming-Rao bound: According to the Hamming bound, the parameters of

any (nr, M,d = 27 + 1) code satisfy

q'rn

M < — )
Zi:O Si

A dual bound in this case is the Rao bound which for the ordered Hamming space
was established by Martin and Stinson [56]: the size M of any (¢t = 27,n,7,q) OOA

satisfies .
M > Z S;.
i=0

A Bassalygo-Elias bound on codes: The next result is new.

Theorem 5.6 Let C be an (nr, M,d) code. Then for anyw < nr(Smt(l— 1— mg 't>7

1
Sy (dn — 2wn + 22

T(Scrit

M < ¢g™dn

We rely upon the next lemma, which is a generalization of the Johnson bound to
the ordered Hamming space.

Lemma 5.7 (Johnson bound) Let € C J—f, |C| = M be a code all of whose vectors
have weight w and are at least distance d apart. Then for d > 2w — w?/(nrde),

dn
dn — 2uwn + ¥2°

T(Scrit

M <
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PROOF: Let € be a projection of € on the ith block of coordinates. For a vector
ze€Q let 2 = (Zr—ha1,---,2) be its suffix of length h. Given & € €, we denote by
x; € Clits i-th block and write & to refer to the h-suffix of x;. Fori =1,...,n; h =
1,...,m; c€ Q" let

A=z €C: xl =c}

be the number of vectors in the ith block whose h-suffix equals ¢. Let 6(x, y) denote
the ¢ function which takes the value 1 if @ = y and 0 otherwise. We have

dr(mi)yi) =r— Z(X:Bf,y?)
h=1

o30S s, )iyl o).

h=1 ccQh

Compute the sum of all distances in the code as follows:

Z d.(x,y) = nrM?* — Z Z Z Z S(xl e)s(y?, c)

z,yeC =1 x;,y,€C h=1 ceQh
n T
=nrM? =) )N (k)2 (5.4)
i=1 h=1 eccQh

To bound above the right-hand side, we need to find the minimum of the quadratic

form
F=>2% > M+ (o)

i=1 h=1 ccQM\{0} i=1 h=1

under the constraints

DY No=Mnr—w), Y MN,=M(1<h<r 1<i<n). (5.5)

i=1 h=1 ceQh

Critical points of F' in the intersection of these hyperplanes, together with (5.5),
satisfy the equations
2\ + Bip =0, 1<i<m1<h<r;eceQ\{0}

2Mo+a+8,=0, 1<i<nml1<h<r a, Bin (5.6)

The system (5.5)-(5.6) has a unique solution for the variables A, 3; 5, a; in partic-
ular,

1 w
AP :M[<——1> 1], h=1, .. .ri=1,.. .,
“0 qh nr(scrit i n "

b Muw

= h=1,...,ri=1,...,n,c <€ Q"\{0}.

i,c )
qhnrécrit

To verify that this critical point is in fact a minimum, observe that the form F'is
convex because its Hessian matrix is 21 and is positive definite (both globally and
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restricted to the intersection of the hyperplanes (5.5) ). Substituting these values
of the As and taking account of the fact that >°; _, ¢7" = 7(1 — §er), we get

P22 Y5 (i) S ()i 1)

i=1 h=1 ¢
w 2w
= M2n< - — + 7’).
N2 rdeit M

Then from (5.4) we obtain

MO0 < Y dfwy) < 2 (2um - )

which gives the result. [ ]

PRrROOF: (of Theorem 5.6). Let §,, C Q™" be a sphere of radius w around zero, and
let A,(nr,d, w) be the maximum size of a distance-d code in §,,. It is readily seen
(cf. (3.4) ) that,
1€||84| = Z| —x) N8| < ¢ Ay(nr, d, w).
:cefH
With the previous lemma, this finishes the proof. ]

Remarks:

1. This theorem implies a lower bound on the size M of a linear (d — 1,n,r,q)
OOA: for any w < nroe(1 — \/1 —d/(nrduit)),

M > %S (dn — 2wn + 7“6;)

and in particular, a lower bound on linear (m — r,m,n)-nets, m = log, M.

(5.7)

2. Caution should be exercised in dealing with codes of a (Enstant weight in the
ordered Hamming space, i.e., codes on the sphere 8,, in H. Indeed, the sphere
S, together with the metric d, is not ball-homogeneous: in particular, the
number of points in §,, located up to a given distance from a point x € §,,
depends on @. However, this does not cause any problem in the previous
theorem.

3. The argument used in the proof of Lemma 5.7 can be also used to give a
proof of the Plotkin bound, Theorem 5.4, that is simpler than the ones known

in the literature. Indeed, let C C ﬁ be a distance-d code. Consider again
expression (5.4) and note that this time there is no restriction on the weight
of the codewords. Using the Cauchy-Schwarz inequality and the fact that
Zcem Al'e = M, we obtain

"L~ M2

MM = 1)d < nrM? =) "> " — = MG
, q
=1 h=1

Solving for M concludes the proof.
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5.2.3 Asymptotics

In this section we assume that n — oo and r is a constant. For a code of size
M let R = % log, M be the code rate. Given a sequence of (rn;, M;,d;) codes we
will say that its asymptotic rate is R and the asymptotic relative distance is ¢ if
1 d;
log, M; = R, lim

1—00 TN,

= 0.

lim

i—00 TN
The Plotkin bound implies that the asymptotic rate and distance of any sequence
of codes satisfy

)
RSl— 5 0§5§50r1t7

crit

R= 07 4] > 5crit-

To state the “sphere packing” or “volume” bounds on ordered codes we rely
upon Lemma 5.1. Namely [72], there exists a sequence of [rn;, k;, d;] linear codes
Ci,i =1,2,... such that n; — oo, k;/(rn;) — R, d;/(rn;) — 0 such that

R>1—-H,,(6), 0<0d< it (Gilbert-Varshamov bound).
On the other hand, for any such sequence of codes,

R<1—-H,,(%2), 0<§<1 (Hamming bound).

The asymptotic version of Theorem 5.6 is as follows:

Theorem 5.8 (Asymptotic Bassalygo-Elias bound) For 0 < § < {4 the
asymptotic rate and distance of any sequence of codes satisfy

R <1 = Hyp (81l = /T=6/00r0)). (5.8)

This bound is better than the Hamming bound for all § € (0, §cyi¢]. It is also often
better than the Plotkin bound. For instance, for ¢ = 2,7 = 2 the bound (5.8) is
better than the Plotkin bound for all § € (0, dcit). For larger g, r the improvement is
attained only for low values of § since the right-hand side of (5.8) becomes N-convex
close to dy. For instance, for ¢ = 3,7 = 4 this range is (0, 0.54), etc.

Asymptotic bounds for digital (¢, m,n)-nets

A (t,m,n)-net is called digital if the OOA that corresponds to it forms a
linear subspace of Fy»". Therefore, bounds on linear OOAs apply to the special
case of digital (¢, m,n)-nets. However, studying asymptotics for this case requires a
different normalization since the strength m —t of the OOA that corresponds to the
net equals r, and both approach infinity independently of n. Therefore, let R = m/n
denote the rate and 6 = (m — t)/n denote the relative strength of the OOA that
corresponds to the net. To state the bounds, we need to compute the asymptotic
behavior of the volume of the sphere, which is different from (5.3). The next result
is due to Bierbrauer and Schmid [18].
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Theorem 5.9 [18] There exist families of digital (t, m,n)-nets with n, (m—t) — oo
for which (R, 0) satisfy the bound R < W (J), where

q—1+a>

W (o) :(5—1+10gq< — blog,(1— a),

and o is defined by da(q — 1+ o) = (¢ —1)(1 — ).

On the other hand, by the Rao bound, any family of (¢,m,n)-nets satisfies R >
U (6/2). Observe that Theorem 5.6 in this case gives the same result as the Rao bound
because the increase of the packing radius in (5.7) over /2 vanishes asymptotically.
Indeed, taking w = w/n and replacing d with m — ¢, we obtain from (5.7)

M > %(5 — 2w + 0(1)) Sun.

The tightest bound is obtained if we take w = 6/2 in this inequality.

Remark: We note that in the case that both n — oo and r — oo while § = d/nr
tends to a constant bounded away from 0 and 1, the lower and upper bounds on codes
coincide [72] (the Gilbert-Varshamov bound converges to the Singleton bound).

5.3 Multivariate Krawtchouk polynomials in the ordered
Hamming scheme

In this and the next sections we implement for the ordered Hamming space
the program outlined in Section 3.2.

Recall from Chapter 2 that the association scheme of the ordered Hamming
space is formally self dual. Its first and second eigenvalues are evaluations of certain
multivariate orthogonal polynomials called the (multivariate) Krawtchouk polyno-
mials. The aim of this section is to establish the properties of the multivariate
Krawtchouk polynomials. These properties generalize the corresponding results for
the usual Hamming space in two ways: first, in Section 3.2 we discussed only the
binary case while here we consider an arbitrary alphabet (this requires only minor
changes); second, we deal with several variables instead of one (this entails substan-
tial complications). These properties will be used in the next section to satisfy the
conditions in (2.10), thereby deriving new linear programming bounds on the size
of ordered codes and OOAs.

Observe that the valencies v, = p?, of the scheme are given by (2.8). By
self-duality and (2.9), the eigenvalues are orthogonal on the space of partitions A, ,.
with weight v.. Below it will be convenient to normalize the weight. Let V,, . be the
space of real polynomials of r discrete variables e = (e, eq,...,¢e,) defined on A, ,.
Let us define a bilinear form acting on the space V,,, by

(ur,ug) = > ui(e)ua(e)wle), (5.9)

eeAn,r

47



where w(e) = ¢ v,. Letting p; = ¢ (¢ —1),i =1,...,7; po = ¢~", we observe
that

forms a multinomial probability distribution on A,,,. Therefore, r-variate polyno-
mials orthogonal with respect to this weight form a particular case of multivariate
Krawtchouk polynomials.

For a partition f € A,,, denote by

Kf(e) = Kfl,,,,,fr(el, coer)

the Krawtchouk polynomial that corresponds to it. Let x = |f| be the degree of K.
Our goal in this section is to derive properties of the polynomials K. In their

large part, these properties are obtained by specializing to the current case general

relations of the ordered Hamming scheme in Section 2.2. However, some work is

needed to transform them to a concrete form that can be used in later calculations.
The following relations are useful below.

Lemma 5.10
(fi,1) =n(qg—1)g ", i=1,...,r, (5.10)
(fis f;) = n(n = 1)(g — 1)?¢ 772, 1<i#j<r, (511)
(fi fiy =nlg =g "1+ (n = 1)(g = Dg'" ), i=1,...,r. (512

ProoFr: To prove (5.10), compute

(fol) =gy {ei (60’ 6:_ . 7@) ﬁ((q — 1)qj*1)ej}

e

n—1 r .
— —nr B 1 ]_1 ej'
. ze:<60’617'~-76i—1,...,er>H((q )7 )

J=1

The sum on e on the last line equals (¢ — 1)¢*~**~U" which finishes the proof. The
remaining two identities are proved in a similar way. [

5.3.1 Properties of the polynomials K/(e)

(i) Kjy(e) is a polynomial in the variables ey, ..., e, of degree x = |f|. There are
(”j:l) different polynomials of the same degree, each corresponding to a partition
of k.

(ii) (Orthogonality) Equation (2.9) is rewritten with normalized weights as

(Kyp, Kg) = vsdpg, |IKf| = /o5 (5.13)
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In particular, let F; = (0°"110"""!),4 = 1,...,r be a partition with one part. Using
(2.8) we get

|Kg|? = (Kg,Kr) =n(¢g—1)¢"", i=1,...,r (5.14)
We take
Ko,..0(e) =1, ecl,,. (5.15)
(iii) The next property is a special case of (2.2).
v Ky(e) =viK(f), e feD,,.

In particular,

Kf(()) = Vy. (516)
(iv) (Linear polynomials) Fori=1,...,r,
KFz‘ (6) = qi_l(q - 1)(” — €6 — = 6r—i+2) - qier—i-i-l' (517)
PRrOOF: This is shown by orthogonalizing the set of linear polynomials {1, eq, ez, ..., ¢e,}.

Use Lemma 5.10 and (5.15) to compute

Kp(e) = aler = (e, 1)) = (e, —nlg = 1)/9)

for some constant ¢;. To find ¢, use (5.14):

n(qg—1)
q

2

n(g—1) =i |le, — =cn(g—1)g >

Hence ¢; = £q. We take K, (e) = n(q—1)—gqe, choosing ¢; = —q so that Kg, (0) > 0.
Next let us perform the induction step to compute Kg,,, (e):

Kry () = i (ers = D 1K |72 er s K ) Ky €)), (5.18)
j=0

where the polynomials Kp,(e),j = 0,...,4, have the form (5.17) by the induction
hypothesis. Straightforward calculations using (5.10)-(5.12) show that

Ky (€) = conn(eri — (0 = D/a)(n — ¢ — -~ — er_isa).

Again using (5.14), we find that ¢;;; = £¢**!; as above, we choose the minus. =

(V) For any e, f:g S An,r

Ki(e)Kq(e) = > ph Kile), (5.19)

heAn,T

where the linearization coefficients p? , are the intersection numbers of the scheme,
described in (2.7).
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(vi) (Three-term relation) Let K, be a column vector of the polynomials K (e)
ordered lexicographically with respect to all f that satisfy |f| = k. The three-term
relation is obtained by expanding a product P(e)K,(e) in the basis {K;}, where
P(e) is a first-degree polynomial. By orthogonality, the only nonzero terms in this
expansion will be polyn