627 research outputs found

    Vertex-Facet Incidences of Unbounded Polyhedra

    Get PDF
    How much of the combinatorial structure of a pointed polyhedron is contained in its vertex-facet incidences? Not too much, in general, as we demonstrate by examples. However, one can tell from the incidence data whether the polyhedron is bounded. In the case of a polyhedron that is simple and "simplicial," i.e., a d-dimensional polyhedron that has d facets through each vertex and d vertices on each facet, we derive from the structure of the vertex-facet incidence matrix that the polyhedron is necessarily bounded. In particular, this yields a characterization of those polyhedra that have circulants as vertex-facet incidence matrices.Comment: LaTeX2e, 14 pages with 4 figure

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    A New Algorithm in Geometry of Numbers

    Full text link
    A lattice Delaunay polytope P is called perfect if its Delaunay sphere is the only ellipsoid circumscribed about P. We present a new algorithm for finding perfect Delaunay polytopes. Our method overcomes the major shortcomings of the previously used method. We have implemented and used our algorithm for finding perfect Delaunay polytopes in dimensions 6, 7, 8. Our findings lead to a new conjecture that sheds light on the structure of lattice Delaunay tilings.Comment: 7 pages, 3 figures; Proceedings of ISVD-07, International Symposium on Voronoi diagrams in Science and Engineering held in July of 2007 in Wales, U

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Valuative invariants for polymatroids

    Full text link
    Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-Reiner quasi-symmetric function, and the invariant G\mathcal G introduced by the first author, are valuative. In this paper we construct the Z\Z-modules of all Z\Z-valued valuative functions for labeled matroids and polymatroids on a fixed ground set, and their unlabeled counterparts, the Z\Z-modules of valuative invariants. We give explicit bases for these modules and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our results confirm a conjecture of the first author that G\mathcal G is universal for valuative invariants.Comment: 54 pp, 9 figs. Mostly minor changes; Cor 10.5 and formula for products of uus corrected; Prop 7.2 is new. To appear in Advances in Mathematic
    corecore