7 research outputs found

    Clock Gating Flip-Flop using Embedded XoR Circuitry

    Get PDF
    Flip flops/Pulsed latches are one of the main contributors of dynamic power consumption. In this paper, a novel flip-flop (FF) using clock gating circuitry with embedded XOR, GEMFF, is proposed. Using post layout simulation with 45nm technology, GEMFF outperforms prior state-of-the-art flip-flop by 25.1% at 10% data switching activity in terms of power consumption

    An Efficient Cache Organization for On-Chip Multiprocessor Networks

    Get PDF
    To meet the growing computation-intensive applications and the needs of low-power, high-performance systems, the number of computing resources in single-chip has enormously increased. By adding many computing resources to build a system in System-on-Chip, its interconnection between each other becomes another challenging issue. In most System-on-Chip applications, a shared bus interconnection which needs an arbitration logic to serialize several bus access requests, is adopted to communicate with each integrated processing unit because of its low-cost and simple control characteristics. This paper focuses on the interconnection design issues of area, power and performance of chip multi-processors with shared cache memory. It shows that having shared cache memory contributes to the performance improvement, however, typical interconnection between cores and the shared cache using crossbar occupies most of the chip area, consumes a lot of power and does not scale efficiently with increased number of cores. New interconnection mechanisms are needed to address these issues. This paper proposes an architectural paradigm in an attempt to gain the advantages of having shared cache with the avoidance of penalty imposed by the crossbar interconnect. The proposed architecture achieves smaller area occupation allowing more space to add additional cache memory. It also reduces power consumption compared to the existing crossbar architecture. Furthermore, the paper presents a modified cache coherence algorithm called Tuned-MESI. It is based on the typical MESI cache coherence algorithm however it is tuned and tailored for the suggested architecture. The achieved results of the conducted simulated experiments show that the developed architecture produces less broadcast operations compared to the typical algorithm

    Robust Circuit Design for Low-Voltage VLSI.

    Full text link
    Voltage scaling is an effective way to reduce the overall power consumption, but the major challenges in low voltage operations include performance degradation and reliability issues due to PVT variations. This dissertation discusses three key circuit components that are critical in low-voltage VLSI. Level converters must be a reliable interface between two voltage domains, but the reduced on/off-current ratio makes it extremely difficult to achieve robust conversions at low voltages. Two static designs are proposed: LC2 adopts a novel pulsed-operation and modulates its pull-up strength depending on its state. A 3-sigma robustness is guaranteed using a current margin plot; SLC inherently reduces the contention by diode-insertion. Improvements in performance, power, and robustness are measured from 130nm CMOS test chips. SRAM is a major bottleneck in voltage-scaling due to its inherent ratioed-bitcell design. The proposed 7T SRAM alleviates the area overhead incurred by 8T bitcells and provides robust operation down to 0.32V in 180nm CMOS test chips with 3.35fW/bit leakage. Auto-Shut-Off provides a 6.8x READ energy reduction, and its innate Quasi-Static READ has been demonstrated which shows a much improved READ error rate. A use of PMOS Pass-Gate improves the half-select robustness by directly modulating the device strength through bitline voltage. Clocked sequential elements, flip-flops in short, are ubiquitous in today’s digital systems. The proposed S2CFF is static, single-phase, contention-free, and has the same number of devices as in TGFF. It shows a 40% power reduction as well as robust low-voltage operations in fabricated 45nm SOI test chips. Its simple hold-time path and the 3.4x improvement in 3-sigma hold-time is presented. A new on-chip flip-flop testing harness is also proposed, and measured hold-time variations of flip-flops are presented.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111525/1/yejoong_1.pd

    Energy Efficient Hardware Design for Securing the Internet-of-Things

    Full text link
    The Internet of Things (IoT) is a rapidly growing field that holds potential to transform our everyday lives by placing tiny devices and sensors everywhere. The ubiquity and scale of IoT devices require them to be extremely energy efficient. Given the physical exposure to malicious agents, security is a critical challenge within the constrained resources. This dissertation presents energy-efficient hardware designs for IoT security. First, this dissertation presents a lightweight Advanced Encryption Standard (AES) accelerator design. By analyzing the algorithm, a novel method to manipulate two internal steps to eliminate storage registers and replace flip-flops with latches to save area is discovered. The proposed AES accelerator achieves state-of-art area and energy efficiency. Second, the inflexibility and high Non-Recurring Engineering (NRE) costs of Application-Specific-Integrated-Circuits (ASICs) motivate a more flexible solution. This dissertation presents a reconfigurable cryptographic processor, called Recryptor, which achieves performance and energy improvements for a wide range of security algorithms across public key/secret key cryptography and hash functions. The proposed design employs circuit techniques in-memory and near-memory computing and is more resilient to power analysis attack. In addition, a simulator for in-memory computation is proposed. It is of high cost to design and evaluate new-architecture like in-memory computing in Register-transfer level (RTL). A C-based simulator is designed to enable fast design space exploration and large workload simulations. Elliptic curve arithmetic and Galois counter mode are evaluated in this work. Lastly, an error resilient register circuit, called iRazor, is designed to tolerate unpredictable variations in manufacturing process operating temperature and voltage of VLSI systems. When integrated into an ARM processor, this adaptive approach outperforms competing industrial techniques such as frequency binning and canary circuits in performance and energy.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147546/1/zhyiqun_1.pd

    Design of Logic-Compatible Embedded Flash Memories for Moderate Density On-Chip Non-Volatile Memory Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2013. Major: Electrical Engineering. Advisor: Chris H. Kim. 1 computer file (PDF); xx, 129 pages.An on-chip embedded NVM (eNVM) enables a zero-standby power system-on-a-chip with a smaller form factor, faster access speed, lower access power, and higher security than an off-chip NVM. Differently from the high density eNVM technologies such as dual-poly eflash, FeRAM, STT-MRAM, and RRAM that typically require process overhead beyond standard logic process, the moderate density eNVM technologies such as e-fuse, anti-fuse, and single-poly embedded flash (eflash) can be fabricated in a standard logic process with no process overhead. Among them, a single-poly eflash is a unique multiple-time programmable moderate density eNVM, while it is expected to play a key role in mitigating variability and reliability issues of the future VLSI technologies; however, the challenges such as a high voltage disturbance, an implementation of logic compatible High Voltage Switch (HVS), and a limited sensing margin are required to be solved for its implementation using a standard I/O device. This thesis focuses on alleviating such challenges of the single-poly eflash memory with three single-poly eflash designs proposed in a generic logic process for moderate density eNVM applications. Firstly, the proposed 5T eflash features a WL-by-WL accessible architecture with no disturbance issue of the unselected WL cells, an overstress-free multi-story HVS expanding the cell sensing margin, and a selective WL refresh scheme for the higher cell endurance. The most favorable eflash cell configuration is also studied when the performance, endurance, retention, and disturbance characteristics are all considered. Secondly, the proposed 6T eflash features the bit-by-bit re-write capability for the higher overall cell endurance, while not disturbing the unselected WL cells. The logic compatible on-chip charge pump to provide the appropriate high voltages for the proposed eflash operations is also discussed. Finally, the proposed 10T eflash features a multi-configurable HVS that does not require the boosted read supplies, and a differential cell architecture with improved retention time. All these proposed eflash memories were implemented in a 65nm standard logic process, and the test chip measurement results confirmed the functionality of the proposed designs with a reasonable retention margin, showing the competitiveness of the proposed eflash memories compared to the other moderate density eNVM candidates

    Memory Systems and Interconnects for Scale-Out Servers

    Get PDF
    The information revolution of the last decade has been fueled by the digitization of almost all human activities through a wide range of Internet services. The backbone of this information age are scale-out datacenters that need to collect, store, and process massive amounts of data. These datacenters distribute vast datasets across a large number of servers, typically into memory-resident shards so as to maintain strict quality-of-service guarantees. While data is driving the skyrocketing demands for scale-out servers, processor and memory manufacturers have reached fundamental efficiency limits, no longer able to increase server energy efficiency at a sufficient pace. As a result, energy has emerged as the main obstacle to the scalability of information technology (IT) with huge economic implications. Delivering sustainable IT calls for a paradigm shift in computer system design. As memory has taken a central role in IT infrastructure, memory-centric architectures are required to fully utilize the IT's costly memory investment. In response, processor architects are resorting to manycore architectures to leverage the abundant request-level parallelism found in data-centric applications. Manycore processors fully utilize available memory resources, thereby increasing IT efficiency by almost an order of magnitude. Because manycore server chips execute a large number of concurrent requests, they exhibit high incidence of accesses to the last-level-cache for fetching instructions (due to large instruction footprints), and off-chip memory (due to lack of temporal reuse in on-chip caches) for accessing dataset objects. As a result, on-chip interconnects and the memory system are emerging as major performance and energy-efficiency bottlenecks in servers. This thesis seeks to architect on-chip interconnects and memory systems that are tuned for the requirements of memory-centric scale-out servers. By studying a wide range of data-centric applications, we uncover application phenomena common in data-centric applications, and examine their implications on on-chip network and off-chip memory traffic. Finally, we propose specialized on-chip interconnects and memory systems that leverage common traffic characteristics, thereby improving server throughput and energy efficiency
    corecore