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Abstract—This paper introduces a new coherence protocol that 
addresses the challenges of complex multilevel cache hierarchies 
in future many-core systems. In order to keep coherence protocol 
complexity bounded, inclusiveness is required to track coherence 
information across levels in this type of systems, but this might 
introduce unsustainable costs for directory structures. Cost 
reduction decisions taken to reduce this complexity may introduce 
artificial inefficiencies in the on-chip cache hierarchy, especially 
when the number of cores and private caches size is large. The 
coherence protocol presented in this work, denoted MOSAIC, 
introduces a new approach to tackle this problem. In energy 
terms, the protocol scales like a conventional directory coherence 
protocol, but relaxes the shared information inclusiveness. This 
allows the performance implications of directory size and 
associativity reduction to be overcome. Contrary to the common 
belief that inclusiveness is inescapable when attempting to 
maintain complexity constrained, MOSAIC is even simpler than a 
conventional directory. The results of our evaluation show that 
the approach is quite insensitive, in terms of performance and 
energy expenditure, to the size and associativity of the directory. 
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I. INTRODUCTION 
Among academia and industry, [1][2][3][4][5][6], the 

consensus is that Cache Coherence could extend its current 
predominance in future chip multiprocessors (CMP). In order 
to sustain future performance improvement, systems will need 
to increase the number of cores per CMP. To successfully do 
so, challenging problems such as the off-chip bandwidth wall 
will have to be faced. As is well known [7], providing a large 
on-chip cache is one of the most effective ways of mitigating 
this problem. Nevertheless, a hardware truism is that plain 
large capacities and fast access are not possible. To deal with 
these problems, the approach followed by current commercial 
systems is to use complex on-chip cache hierarchies, usually 
with three levels of cache, the two closest to the processor 
containing private copies and the last level cache (LLC) 
somehow shared among all the cores in the CMP. Complex 
cache hierarchies are intended to provide short-steps in a 
“stairway” to main memory that is moved further away from 
the core. The most common number of levels used nowadays is 
three [4][5][2], but this is subject to change in future systems, 
some commercial systems  already using four levels [8]. 

The responsibility of the coherence protocol is to ensure 
that all the potential copies of a memory block scattered over 

different caches are coherent. In other words, any processor 
should see the same content of all the memory locations under 
any circumstance. A large number of cores and complex cache 
hierarchies might increase coherence protocol responsiveness. 
On the one hand, having a large number of cores in the chip 
makes it unfeasible to rely on broadcast-based coherence 
protocols. Although in current commercial CMPs this is the 
predominantly used approach [2][4][5][9] it has foreseeable 
difficulties to achieve success with larger numbers of cores in 
the system, due to their higher energy requirements [10]. On 
the other hand, complex cache hierarchies increase the 
likelihood of having multiple copies of shared blocks scattered 
over private levels, which, as we will show later, is challenging 
for pure directory-based coherence protocols. The private 
section of the cache hierarchy in current systems is quite large, 
in order to achieve  progressive hit-times [11] throughout the 
different levels of the memory hierarchy. As the memory wall 
effects become more relevant, more on-chip cache capacity 
will be required and therefore large private caches will be 
needed in the medium term. In the long term, with the advent 
of 3D stacking or beyond-CMOS technologies, this tendency 
will be accentuated. Under these conditions, the amount of 
precise sharing information required by directory protocols in 
shared level caches or directories will be increased. 
Additionally, when the aggregate private cache available to 
each processor becomes larger, the access pattern perceived at 
the structures where the sharing information is kept will 
diverge faster than the one actually executed by the cores [12].  

Under the previously depicted context, we have developed 
a coherence protocol suitable to confront the problem 
comprehensively. MOSAIC1 is constructed on top of a 
conventional directory protocol [13], but instead of using 
inclusiveness to guarantee system correctness, MOSAIC will 
use a token coherence correctness substrate [14]. The proposal 
inherits the Token Coherence protocols’ simplicity, their lack 
of precise sharing knowledge and the power efficiency of 
conventional Directory protocols. Additionally, MOSAIC 
circumvents not only most of the multicast traffic of Token 
Coherence, but also the inelegant starvation avoidance 
mechanisms needed due to the lack of serialization points. 
Although from a performance and a cost point of view non-
inclusiveness is desired, the common assumption is that 
inclusiveness is inescapable to keep coherence protocol 
complexity attainable [15][12]. As a matter of fact, MOSAIC is 

 
1 Due to the 6 states used in it: M (modified) O (owned) S (shared) A 

(allocated block) I (invalid)  C (constructing)  
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simpler than a plain directory coherence protocol and any 
block stored in private caches may not be tracked (i.e. no entry 
will necessarily be allocated in the directory). The protocol is 
engineered to reconstruct the entry under demand (i.e. if a core 
misses at its private cache levels for an untracked cache block 
that is stored in other cores’ private cache). We will use token 
counting to guarantee coherence correctness (i.e. single writer, 
multiple readers) and to filter unnecessary traffic. Although our 
proposal is utilizable using in-cache or sparse directories, we 
will focus our attention on sparse directories [13]. We will 
show that even with extremely small directories and/or 
associativity, it is possible to sustain the performance and 
energy consumption of the system. The key aspect of this 
remarkable achievement is that token counting allows the data 
stored in LLC to perform directory entry reconstructions 
without any extra traffic. As the reader may remember, token 
coherence [14] is based on assigning a fixed number of tokens 
per cache block and requires at least one token to read and all 
of them to write. The most common case is that the data 
accessed will be private so LLC will have data with all the 
tokens. Taking this into account, LLC will, in most cases, have 
all the tokens, making it unnecessary to broadcast a message to 
reconstruct the block. In this way, LLC data will serve 
indirectly as the most effective filter to determine whether a 
data block is shared or not. To our knowledge, this is the first 
proposal that uses LLC data cache contents to effortlessly filter 
most of the on-chip traffic regardless of the complexity of the 
directory.  

II. MOTIVATION 

A. Directory Schemas 
Traditional directory-based coherence protocols need a 

structure where sharing information, i.e. sharer vector and 
block state, is kept all the time. There are two main approaches 
to keep this information: in-cache and sparse directories [13].  

For in-cache directories, each block stored in LLC has the 
tag and data attached to the block state and the sharers 
information (sharers bit vector, pointers, etc). The coherence 
controller uses this information to deal with incoming requests 
and having a precise knowledge of the block’s sharing status is 
necessary to guarantee correctness. Therefore, in this case LLC 
inclusiveness with the previous level caches is necessary 
because it is the only way to have knowledge of private level 
contents. For small private levels, this approach has a 
substantial overhead because, in order to keep track of the 
sharing status of a handful of data blocks, any LLC block has 
to have a substantial storage space reserved per block (at least 
log2P bits for P processors).  

If we take this into account, sparse directories seem a better 
approach for CMPs, because directory entries are allocated 
under demand and therefore the overhead is proportional to the 
aggregate private cache levels size (and not to the LLC size). 
When a block arrives at the chip in response to a request, a new 
directory entry is allocated. It will have to include at least, the 
block tag, the block state and the sharer vector. This entry is 
allocated in a separate structure from the data. In current 
NUCA caches, to guarantee scalability, the most extended 
strategy is to bank the directory over the chip, keeping the data 
and directory slices connected to the same router [16]. In most 
cases, the address-to-slice mapping used is statically 

determined by the lowest bits (closest to the byte offset) of the 
address. The capacity and associativity of the directory has to 
be sufficient to keep private-level cache tags. In small systems 
[17] with small private caches and low associativity, the 
coverage can be full, commonly denoted Duplicate Tag 
Directory. Nevertheless, for medium-to-large numbers of 
cores, there is no feasible way to use such large-scale 
associativity, it only being possible to keep a subset of L1 tags 
and enable conflict misses in it through an associativity 
reduction [18].  

B. Inclusiveness implications with large private caches 
The previous discussion assumes an inclusive directory, i.e. 

any block stored at any private cache level should have an 
entry allocated in the directory structure. This significantly 
simplifies coherence protocol implementation and verification 
effort [15].  Unfortunately, in a many-core CMP, the aggregate 
private capacity could be substantial. While L1 has to be small 
enough to attain core clock cycle, L2 should attenuate the 
latency of the presumably large L3 cache with a suitable hit-
rate. As for commercial systems, the average private capacity 
of L2 is between 1/8 and 1/4 of L3 size. Similar optimal 
capacity ratios have been indicated by academic works such as 
[12]. The relevance of the hit-rate in private L2 cache makes it 
necessary to use highly associative caches, with at least 8 
ways. Combining these three factors (large number of cores, 
large private caches and large cache associativity), the 
complexity of a Duplicate Tag Directory is unsustainable [18]. 
If either of these values is not sufficient, private block evictions 
will occur because of the lack of space available in the 
directory and so the system performance may be affected [19].  

C. Previous approaches to the problem 
Since directory-based coherence protocols are the most 

suitable choice for large-scale CMPs in energy terms, 
significant previous work was done to tackle the 
aforementioned problems. For sparse directories, works such as 
[19] only allocate directory entries for shared blocks, 
minimizing the pressure on the storage structure. Orthogonally, 
works such as [20][21] proposed skewed replacement 
algorithms to minimize directory conflicts. Other approaches 
propose minimizing the sharing information per directory entry 
in order to minimize the evictions [16][22]. Finally, solutions 
such as [23] opt for directory information reconstruction based 
on hardware probing. A comprehensive review of previous 
strategies can be read in [18]. All of these methods assume a 
conventional directory-based protocol and they do not alter the 
basic operation of the coherence protocol. For this reason, our 
approach could be combined with any of them in order to 
further improve the coherence protocol scalability.  

III. MOSAIC 
In contrast to how the aforementioned proposals confront 

the problems derived from inclusiveness, we choose a different 
approach: a new coherence protocol that does not require 
inclusiveness to guarantee correctness and which is still 
considerably simpler than a traditional directory protocol. 
Next, we will detail how the approach works. 
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A. Conceptual Approach 
The proposal is focused on reducing one of the main 

problems that the directory approach has: the space needed to 
hold the coherence information for all the cache blocks stored 
in the private levels. The cost of the directory is determined by 
the size and plurality of the private levels. With a Duplicate 
Tag Directory, such as the one used by [6], it is necessary to 
have in the directory as many sets as there are in the private 
levels and the associativity for each of them has to be at least 
the product of the private levels’ associativity by the number of 
processors. This would make the required associativity 
unfeasible, due to the large values needed if we use a large 
number of processors and a large private cache capacity, so this 
solution will not scale beyond a modest number of processors. 
To provide more reasonable associativity, yet keep the 
coherence information needed in most cases, it is necessary to 
increase the number of entries in the directory. This solution 
implies that new conflicts will appear because of coincident 
requests from different addresses requiring the same entry. 
These conflicts may induce the eviction of actively used blocks 
from the private cache levels. In contrast, under these 
situations, MOSAIC will not evict a block from the private 
level just because there is not enough space in the directory to 
hold its coherence information. In other words, directory 
evictions will be silent. Therefore, when an entry is being 
evicted from the directory, private copies are not invalidated. 
Consequently, after a miss in the directory, valid copies of the 
block might be in any of the private levels, in the LLC data 
slices or in off-chip memory.  

After any subsequent miss in the directory, in order to 
guarantee coherence correctness, an on-chip reconstruction of 
the directory entry is initiated. This process will end when all 
the coherence information associated with that block (i.e. the 
sharers of the block and their state) has been collected. Token 
counting [24] is used to perform this process. This 
methodology states that all the block tokens (which are at least 
equal to the number of processors in the system) are required 
for a write operation and at least one token is required for a 
read operation. This approach makes the process simple and 
avoids negative acknowledgements [9]. To explain the process, 
Fig. 1 presents a simple example started when the processor P0 
sends a read request. After missing in its private cache (which 
might be composed of multiple levels) the request is forwarded 
to the directory slice corresponding to that address (step 1). If 
there is no valid entry for this address, the request is forwarded 
to the last-level cache associated with the address (step 2). In a 
correctly designed system, directory and LLC slices for the 
same address will be side by side [13]. If all the tokens of the 
cache block are stored in the LLC, the sharing information is 
directly reconstructed, since that means there is no other sharer 
in the system for this address. If not, a multicast is sent to all 
private caches and memory controllers (step 3). In this 
particular case, since the CMP has three processors, the tokens 
per block will be fixed to three, two being stored in P1 private 
cache and one in P2 private cache. To implement the owner 
state, Token Coherence uses a particular token denoted Owner 
Token to identify the forwarder of the data in a read operation. 
In this case, we assume that P1 has the owner token (and 
consequently the block is in owner state (O)). If the owner 
token was located in LLC, data would be forwarded in parallel 

with the multicast request to the other private L1 caches. In this 
particular case P1 will forward a token and a copy of the data to 
P0 (step 4). Simultaneously the cores with tokens will notify 
the directory about the number of tokens they have for that 
block, if they have any, including P0 with its new token (not 
shown in the figure). This information will be stored in the 
corresponding entry, silently evicting the previous one. For a 
write operation, the process will be similar with the difference 
that all of the sharers will forward their tokens to the requestor 
(rendering their copies invalid). After collecting all the tokens, 
the requesting processor will notify the directory. If P1 had had 
the block in a modified state, a copy of the data and the 
required tokens would have been forwarded to P0. 

 
 
 
Token counting is a key component in our proposal 

because it simplifies all the handshaking protocol used to 
reconstruct directory entries. Since the directory behaves like a 
serialization point, concurrent operations initiated by different 
processors in the same cache block will never end up suffering 
starvation. In this way, the directory coherence controller will 
avoid these problems without requiring persistent request [14] 
or added token tracking facilities [25][10]. Above all, token 
counting is useful to filter most of the multicast messages and 
speed up the directory entry reconstruction. As LLC capacity 
will be substantially higher than the directory’s, this will be the 
most habitual scenario for actively used private data blocks, 
which is the common case. Therefore, in most situations the 
data and all the tokens will be allocated there. If all tokens are 
in LLC, it is known that no other copy of the block is located in 
any of the private caches and the directory entry reconstruction 
will proceed without broadcast. Additionally, it should be 
noted that actively shared data (such as those associated with 
frequent state changes, i.e. producer-consumer scenarios) will 
require frequent accesses to the directory. A plain LRU 
replacement algorithm in that structure, even with a low 
associativity, will evict entries of private data sooner.  

As the reader might appreciate, the protocol is conceived to 
trade directory overheads for bandwidth. Although there are 
other similar solutions following this overhead-bandwidth 
tradeoff (such as [13][16][23][22]), in contrast with them, 
MOSAIC habitually uses a regular directory and requires extra 
bandwidth consumption in fringe situations. The key point is to 
use the large LLC capacity to indirectly filter unnecessary 
snoops without adding complexity in the coherence protocol or 
using any auxiliary hardware structure. 
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Fig. 1. Sketch of an example of a directory entry reconstruction. 
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The benefits provided by MOSAIC will decrease the 
number of misses in private cache, which will reduce not only 
average access time, but also bandwidth consumption. In the 
previous example P1 and P2 will not be invalidated when 
directory entry is replaced. Therefore, the extra bandwidth 
required by MOSAIC can be compensated in conventional 
sparse directories. Although the case of in-cache directory is 
not studied in this paper, the effect will be more relevant since 
an early directory eviction will imply a subsequent memory 
access for later processor requests [12]. 

B. Protocol Details and Complexity Discussion 
The states of each data block that have been considered are 

those corresponding to the token-based protocol [14]: Invalid 
(I), Modified (M), Owner (O), and Shared (S). There are two 
new states of the sparse directory, Constructing (C) and 
Allocated (A), which provide the key implementation details of 
the MOSAIC protocol.  

Each of the entries in the directory will hold the coherence 
information about the address it makes reference to. Besides 
the necessary state of the block, this information is summarized 
in the sharers of that block, the core holding the owner token 
(as it will be in charge of forwarding data if necessary) and a 
token-count field of that block (we will see next why this is 
necessary). We assume the sharers are kept as a full bit vector, 
but we could use any other existing method [18][20] to 
maintain this sharers information.  

In Table 1 a simplified table-based state-transition table 
[26] of a sparse directory controller is shown. With this table, 
states, events and main actions are represented. For each row, 
the first field corresponds to a possible state of an entry in the 
directory. There are three main states (I, C, A) and their 
corresponding transient states for performance improvement. A 
brief description of each one is shown in Table 2. 

Each of the columns in Table 1 represents the event 

triggered by the controller when receiving a specific message. 
Each table cell shows the main actions taken by the controller 
and, in the bottom right corner, the state the block changes to in 
that transition (if not defined, the entry stays in the same state).  

When receiving a request (GETS or GETX), if the block is 
not present in the directory (state I), a reconstruction process 
like the one explained in the previous section is initiated. In 
order to avoid putting the reconstruction process in the critical 
path when dealing with a request, MOSAIC piggybacks the 
original requestor and the type of request to the reconstruction 
message. This way, the reconstruction and resolution of the 
request are done in parallel. This is the reason why two 
construction states (C_S and C_X) are needed. During the 
reconstruction, when the controller receives information about 
some tokens’ location, it adds that sharer to the sharers bit 
vector and updates the number of known located tokens. When 
the request triggering the reconstruction is a read request (state 
C_S), the cache with the owner token of the block will send a 
copy of the data with one of the tokens to the requestor and 
will inform the directory about how many tokens it has left. 

TABLE 1. MOSAIC DIRECTORY CONTROLLER TRANSITIONS TABLE 
 
 GETS GETX Token Info 

Last  
Token 
Info 

Unblock PUT  
Data 

PUT  
Tokens 

Silent 
Replace 

Replace  
with tokens 

Ack From 
LLC 

I 
• initiate 
reconstruction 

• initiate 
reconstruction    • write data in LLC • write tokens in 

LLC    
 C_S  C_X 

C_S wait wait 

• add sharer 
• update num 

tokens 
known 

• add last 
sharer 

• wait for 
Unblock 

• add last sharer • bounce data to 
requestor • update tokens wait wait  

  A 

C_X wait wait   
• add exclusive 

sharer • bounce data to 
requestor 

• bounce tokens to 
requestor 

wait wait  
 A 

A 

• forward 
request to 
Owner  

• multicast 
request to all 
sharers    • update tokens • update tokens 

• invalidate 
block 

• invalidate 
block 

• write 
Tokens in 
LLC 

 

 A_S  A_X  I  A_I 

A_S wait wait   • add new sharer 
• update tokens • update tokens wait wait  

 A 

A_X wait wait   

• remove old 
sharers 

• add exclusive 
sharer 

• bounce data to 
requestor 

• bounce tokens to 
requestor 

wait   

 A 

A_I wait wait    • write data in LLC • write tokens in 
LLC   

• remove 
block 

 I 

TABLE 2. DESCRIPTION OF MOSAIC’S MAIN COHERENCE PROTOCOL 
STATES 

States Description 

I Invalid. Block is not present in the sparse directory. 

C_S Constructing the block after receiving a read request (GETS) from a 
core.  

C_X Constructing the block after receiving a write request (GETX) from a 
core. 

A Allocated. Block is fully constructed with all the coherence 
information about that block. 

A_S Allocated and a read request (GETS) has been received from a core. 
Waiting for an unblock message. 

A_X Allocated and a write request (GETX) has been received from a core. 
Waiting for an unblock message. 

A_I Invalidating a block. 

 

Events 

States 
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When the requestor finishes its request, it sends an unblock 
message. The directory will always wait for the requestor’s 
unblock message to finish the reconstruction. This will 
guarantee that no other request is dealt with until the entry is 
fully constructed and the request is completely resolved. If the 
request is a write request, all the caches with a copy of the 
requesting block will have to forward their tokens to the 
requestor, which will send the unblock message when it has 
collected all of them and so its request is finished. In this case, 
the directory controller will add the requestor as the exclusive 
sharer of the data (state C_X, event Unblock).  

If the coherence information needed is in the directory 
(state A), all the data locations are known so the directory only 
has to forward the request to the appropriate sharer. If it is a 
read request (GETS), it sends it to the cache holding the owner 
token; if it is a write request (GETX), it sends it to all the 
sharers of the block.  

The directory needs to be informed about all the 
replacements occurring in the private levels in order to have 
updated information about the sharers if the block is 
constructed. Any private L2 cache replacing a block sends a 
request with the tokens (PUT Tokens) or with the data if it has 
the owner token (PUT Data). If the entry is not constructed 
(state I), data and tokens are written back to LLC. If the block 
is being constructed (C_S or C_X) or the directory is dealing 
with a request (A_S or A_X) then the directory might be the 
one in charge of resolving the pending request with the 
replaced data so it bounces it to the requestor. If the block is 
constructed and there is no pending request (state A) then the 
directory updates the number of tokens at the entry (this is why 
it has to hold a token count field) or writes back data in LLC. 

The rest of the events, state transitions, and actions are self-
explanatory. However, the interested reader can access the full 
protocol specification (and the conventional directory) at [27]. 

IV. EVALUATION METHODOLOGY 

A. System Configuration  
To analyze MOSAIC, we will use aggressive out-of-order 

cores, similar to those used by commercial systems [2][5][4]. 
The rationale behind this decision is that instruction-level 
parallelism (ILP) performance should not be underestimated 
[6]. Out-of-order processors will exert a high pressure on the 
coherence fabric. Since the number of pending instructions per 
core could be large, the concurrent coherence operations could 
be orders of magnitude bigger than those observed with a large 
count of simple in-order cores.  

In our particular case, we will use 4-wide issue cores with 
128 in-flight instructions and up to 16 pending memory 
operations. The number of cores chosen in our evaluation is 8 
and 16 cores per CMP. The on-chip hierarchy configuration, 
like in [2][5][4], is composed of three levels. The first two are 
private, strictly non-inclusive layers. The third level is similar 
to the one proposed in [5], shared following a static NUCA 
[28] approach. In contrast with this system, instead of an ultra-
wide ring network (which is imposed by the coherence 
protocol used) we will use a mesh network, which is 
characterized by better on-chip bandwidth scalability and better 
performance/cost ratio. We will assume that the routers in the 
network can handle multicast traffic natively [29]. Although 
for this size of system a broadcast protocol might perform 

better [25][10], our objective is to prove that MOSAIC is 
capable of overcoming classic directory limitations, which will 
be necessary with a much higher number of cores in the CMP. 
Nevertheless, to evaluate systems with tens or hundreds of 
cores is unfeasible with current evaluation tools because of the 
computational effort of such a task and the limited availability 
of scalable workloads. Comparing MOSAIC with a 
conventional protocol, varying the directory properties (i.e. 
associativity and capacity) might be enough to demonstrate the 
advantages of the proposal. Similarly, studying the evolution of 
the benefit and drawbacks of 8-core CMP compared to 16-core 
CMP will allow us to glimpse the scalability of the idea with a 
higher number of cores.  

Although MOSAIC can work in both sparse and in-cache 
directories, we will focus our analysis on the former, since they 
have less storage overhead [13][18] and the cache evictions 
due to directory conflicts have lower impact on performance. 
Although not shown in the paper, we have carried out a similar 
performance analysis with in-cache directory designs and 
MOSAIC provides higher benefits than it does in sparse 
directories. A summary of the main system parameters used in 
our analysis is shown in Table 3. 

B. Workloads & Simulation Stack 
We will use GEMS [33] as the main tool for our evaluation. 

With GEMS, it is possible to perform full-system simulations. 
Coherence protocols have been implemented using the SLICC 
language (Specification Language for Implementing Cache 
Coherence). For the power modeling we use CACTI 6.5[34] 
for modeling the cache and DSENT [35] for  the network.  

Ten workloads, shown in Table 4, are considered in this 

TABLE 3. SUMMARY OF 8-CORE CMP SYSTEM CONFIGURATION  
(OR 16-CORE CMP)  

C
or

e 
A

rc
h.

 Functional Units 4×I-ALU/4×FP-ALU/ 4×D-MEM 
Instruction Window size / Issue 
Width 128, 4-way 

Frequency / Processor Count  3Ghz, 8 (or 16) 

Pr
iv

at
e 

C
ac

he
s 

(L1)Size/Associativity / 
Block Size / Access Time 32KB I/D, 2-way, 64B, 1 cycles 

(L2)Size / Associativity/ 
Block Size / Access Time 

128KB Unified, 4-way, 64B, 2 
cycles, Exclusive with L1 

Sh
ar

ed
 

L3
 Size / Associativity / Block Size 16MB (or 32MB), 16 (or 32)×1MB, 

16-way, 64B  
NUCA Mapping Static, interleaved by LSB  
Data Slice Size / Access Time 1MB / 6 cycles 

Mem. Capacity / Access Time / Memory 
Controllers / BW 

4GB / 240 cycles / 2 / 32GBs (or 4 / 
64GBs) 

N
et

w
or

k Topology / Link Latency / Link 
Width 4×4 (or 6×6) Mesh / 1 cycle / 16B  

Router Latency / Flow Control / 
Routing 1 cycle / Wormhole / DOR 

 

TABLE 4. MULTITHREADED WORKLOADS (8P AND 16P) 

SERVER 
[30] 

OLTP IBM DB2 DBMS, TPC-C like 
10000 Transactions 

Apache Apache web server, SpecWeb 
like, 25000 Transactions 

JBB SpecJBB, 70000 Transactions 

Zeus Zeus, SpecWeb like, 25000 
Transactions 

NPB[31] 
Integer Sort (CG) CLASS A 
Fast Fourier Transform (FT) CLASS W 
LU Diagonalization (LU) CLASS A 

SPEC [32] 
Astar Native, 7 thr.(8P), 15 thr. (16P) 
Hmmer Native, 7 thr.(8P), 15 thr. (16P) 
Omnetpp Native, 7 thr.(8P), 15 thr. (16P) 
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study, including both multi-programmed and multi-threaded 
applications (scientific and server) running on top of the 
Solaris 10 OS. The numerical applications are three of the NAS 
Parallel Benchmarks suite (OpenMP implementation version 
3.2 [31]). The server benchmarks correspond to the whole 
Wisconsin Commercial Workload suite [30]. The remaining 
class corresponds to multi-programmed workloads using part 
of the SPEC CPU2006 suite [32] running in rate mode (where 
one core is reserved to run OS services).  

We model hardware-assisted TLB fill and register window 
exceptions for all target machines. Multiple runs are used to 
fulfill strict 95% confidence intervals (error bars are not visible 
in most cases). Benchmarks are fast-forwarded to the point of 
interest, during which page tables, TLBs, predictors, and 
caches are warmed up. In iteration-based applications, such as 
NPB, a warm checkpoint is taken in the middle of the 
execution and with a reduced number of iteration runs. 
Transactional workloads are warmed up by running hundreds 
of thousands of transactions. The chosen workloads have been 
selected trying to cover diverse use scenarios, varying the 
sharing degree (from none in SPEC applications to a large 
amount in Server Workloads) and sharing contention (from 
none in SPEC to a large amount in scientific applications). 
Among the NAS applications, we chose the 3 with the highest 
sharing contention. From the SPEC suite, we chose 3 
applications with a variable range in working set size. 

V. IMPACT OF DIRECTORY CONFIGURATION ON PERFORMANCE 
When the number of cores is large, conventional directory 

protocols have to face limitations in two main factors, capacity 
and associativity. Next we will analyze how sensitive 
MOSAIC is to both parameters and compare its results with 
those from a conventional sparse directory implementation. 
The reference point in this analysis will be a directory with 
duplicate tags. Since under this configuration there will not be 

private cache invalidations due to directory misses, there will 
be no performance differences between MOSAIC and 
conventional protocols. We will start with small private caches 
of a 2-way 32 KB L1 I/D and a unified 4-way victim L2 cache 
of 64KB. Assuming in both cases a block size of 64 bytes, for 
these cache sizes, the number of required entries in the 
directory to avoid capacity misses is 2048*#cores. Until 
section VII, we will assume that the number of cores in the 
CMP is eight. Therefore, assuming 8 bytes per directory entry 
(enough to store tag and sharing information), the total 
directory size required to avoid capacity misses will be 128KB. 
The storage overhead will grow with the number of cores since 
the aggregate private cache will increase (the number of entries 
needed in the directory) and the sharing vector will be larger 
(the size of the entries in the directory). With the aim of 
minimizing the access time to data in data slices and avoiding 
bottlenecks in the accesses, we distribute the directory in 16 
slices (as many slices as the LLC). The slice interleaving of 
data and directory entries over LLC uses the least significant 
bits of the address. For the same addresses, the directory slice 
and data slice are 1 cycle apart.  To avoid all conflict misses in 
the directory, the required associativity will be 64. This large 
associativity is necessary because on each entry we need as 
many ways as the sum of both of the private levels’ 
associativity times the number of cores (i.e. (L1I associativity 
+ L1D associativity + L2 associativity) * #cores). 

A. Sensitivity to Conflict Misses in the Directory. 
Initially, we will determine the sensitivity of a conventional 

directory  protocol and MOSAIC when the associativity is 
reduced, i.e. how the two protocols react when the number of 
conflict misses in the directory is increased. In order to perform 
this analysis, we keep the directory capacity fixed at 128KB 
and modify the associativity from 64-way to 1-way per set. As 
associativity goes down the number of conflicts grows, because 

 
Fig. 2. Normalized number of misses at the private levels when sparse directory associativity is changed for  

a conventional coherence protocol (BASE) and MOSAIC. 

   
Fig. 3. (a) Mosaic execution time normalized to BASE, while varying the associativity of a fully sized sparse directory (i.e.16K entries). (b) Mosaic execution time 

normalized to BASE, while varying the associativity for a directory with one eighth of fully sized sparse directory (i.e., 2K entries). 
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even though there is space for all potential blocks stored in 
private caches, some of them may conflict in the directory. 

Fig. 2 shows how the base Directory protocol (to avoid 
confusion from now on it will be denoted as BASE) and 
MOSAIC impact in cache level behavior when the number of 
directory conflicts is increased. Unsurprisingly, BASE 
directory has a bad reaction to that change in the associativity, 
obliging a large number of misses in private levels due to 
directory invalidations. In some applications, such as Omnetpp 
(where the cores are not sharing any data), the misses in those 
levels are multiplied by two. Nevertheless, and as expected, 
MOSAIC is completely insensitive to any associativity 
modifications. These results indicate that the implementation 
cost can be the same as the simple directly mapped 
configuration without any performance penalty.  

The final performance differences depend on each type of 
application, i.e. its behavior in private caches using a duplicate 
tag directory. Fig. 3(a) shows these results, indicating that the 
MOSAIC protocol could be up to 40% faster than the BASE 
protocol. For the combination of system size and applications 
used, the most remarkable effects are found in extreme 
situations when even with capacity to track all private blocks, 
the performance will fall, on average, 12%. Previous works, 
such as [18], have identified limited associativity as a major 
issue in directory coherence protocols. MOSAIC overcomes 
this problem completely since a simple direct mapped directory 
is capable of maintaining the performance.  

B. Sensitivity to Capacity & Conflict Misses in the Directory 
The second effect that might influence performance is the 

capacity misses in the sparse directory. The combination of 
capacity misses induced by limited directory storage might 
increase conflict misses. To compare how both effects might 
impact on each protocol, we reproduce the previous analysis, 
but reducing the directory capability to track only an eighth of 
the private caches capacity, i.e. up to 2K blocks. Fig. 3(b) 
reproduces the results provided in Fig. 3(a) with the new 
directory capacity. In this new configuration, misses in private 
cache for BASE, although not shown, are substantially higher. 
After reducing the size of the directory, even with an 
associativity of 64, capacity conflicts in the directory have a 
relevant impact on performance, degrading it up to 20%. The 
capacity misses seem to be more relevant in applications with a 
higher sharing degree (i.e. commercial workloads [30]). 
Applications with a reduced working set (such as hmmer) are 
less sensitive to capacity misses in the directory. With this 
directory size, conflicts are more probable than in the fully 

sized directory and consequently associativity now has a 
greater influence on performance.   

To understand how directory invalidations influence each 
protocol, we provide the average access time for on-chip hits in 
Fig. 4. Again, the dissimilar behavior of the two protocols is 
notable. On some applications, MOSAIC shows half of the on-
chip latency of BASE due to the extra misses in private caches 
in the latter. Those requests are mostly resolved by LLC with 
extra added latency, which explains its growing contribution 
when the directory caused evictions in the private caches are 
more relevant. With MOSAIC, all the applications demonstrate 
a higher contribution of the private L2. Moreover, for 
applications with a high sharing degree, the broadcast 
reconstruction message favors the forwarding between caches 
as the Other L1 and Other L2 contributions show, and so 
avoids an access to L3 as the conventional directory does. The 
steady miss latency values obtained demonstrate MOSAIC’s 
stability even in the most extreme configurations, a direct-
mapped directory with capacity to track just an eighth of the 
private caches blocks. 

C. Sensitivity to Directory Size in a Realistic Private Cache 
configuration. 

Up to now, we have been using limited private cache 
capacity and associativity. If we consider the configuration of 
commercial systems [2][4][5],  L2 caches have between 1/8 
and 1/4 of L3 capacity and both L1 and L2 have a larger 
associativity.  Therefore, we will next carry out a sensitivity 
analysis for the size of the directory with a realistic 
configuration for private caches. In this particular case, we try 
to mimic the L2 cache configuration in Intel’s Nehalem (4-way 
32 KB of L1s and 8-way 256 KB of L2). We will keep the 

 

 Fig. 4. Average on-chip latency for a 16KB (2K entry) sparse directory when varying its associativity. 

 
Fig. 5. MOSAIC execution time normalized to Duplicate Tag Directory, 

for a Nehalem-like private caches configuration varying directory capacity. 
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associativity fixed at 16-way (like in the data banks) and vary 
the capacity of the directory, from double [13] the full 
directory (i.e. 640KB) to a tenth of full directory (i.e. 32KB). 
Fig. 5 presents the average execution time for each application 
normalized to the double-sized directory where even with the 
smallest capacity, there is no performance impact. When 
reproducing the same experiment for the BASE protocol, the 
performance impact is greater than 20% in some cases.  

VI. COST ANALYSIS: BANDWIDTH  
AND ENERGY OVERHEAD OF MOSAIC 

In light of the previous results, in contrast to a BASE 
protocol, MOSAIC’s behavior is fairly independent of the 
directory configuration. Since the rationale of MOSAIC is to 
trade directory cost for on-chip bandwidth and additional 
snoops in private caches, we need to analyze the energy 
overheads. The first step in this analysis is to quantify how 
directory cost reduction influences on-chip bandwidth 
consumption. If the network is using routers with support for 
handling multicast traffic [29], the real measure of bandwidth 
and energy consumption for the interconnection network is 
given by the average link utilization and not the end-point 
traffic consumption [25]. Fig. 6(a) shows, for the initial 
configuration (i.e. exclusive 32KB L1 and 64KB L2), the 
average link utilization when the capacity of the directory or its 
associativity is reduced. The values are normalized for a 
duplicate tag directory, i.e. capacity for 16K entries (128KB) 
and 64-way associative. The results are outstanding, showing 
that on average and under the worst conditions (i.e. a 2-way 
associative directory, with an eighth of the capacity of the full 
directory) the traffic is just 5% higher than a duplicate tag 
directory.  

Focusing on each application, when there is no sharing 
degree (such as the multi-programmed ones), applications are 
completely insensitive to directory configuration. Since there is 
no shared information, this is the expected behavior. More 
noteworthy is the behavior of scientific applications, where 
there is a substantial amount of shared and highly contended 
data. In such cases, the directory replacement algorithm 
prevents the eviction of actively shared data and entries of 
private blocks are more prone to be replaced. Consequently, 
traffic does not change. Server workloads seem to be the most 
sensitive, since in this case the amount of shared data is large, 
most of them being code. Therefore these blocks will be 
accessed in read-only mode and the directory will be less 

frequently accessed. As a consequence, the chances of evicting 
an actively shared entry are higher than in numerical 
applications and consequently so too are the chances of 
requiring a multicast to reconstruct these entries. Nevertheless, 
even in the most adverse (and unpractical) directory 
configurations, this increment is below 20%, which is 
substantially less than in broadcast coherence protocols 
[10][14][25].  

The key point for this behavior is that multicast is only 
generated when, after a miss in the sparse directory, the data 
and tokens available in LLC are not enough to reconstruct the 
sharing information. If the block has all the tokens, we know 
that there are no copies in any private caches and consequently 
the multicast can be avoided. Since LLC can be very large, the 
most usual case will be this one and, therefore, multicast will 
be required only if the data is really shared. In contrast, if we 
compare the bandwidth consumption of MOSAIC and BASE 
protocols when the directory is simplified, the results are very 
different. As Fig. 6(b) indicates, the BASE protocol requires 
more on-chip bandwidth in most cases, especially when the 
directory is highly limited. In the most extreme case, i.e. a 
16KB, 2-way associative directory, BASE requires up to 40% 
extra bandwidth consumption on average. The main reason for 
this is that MOSAIC has fewer misses in the private caches and 
directory evictions are silent. For instance, in SPEC 
applications all processors have independent executions so the 
conflicts that occur in the sparse directory with a conventional 
directory provoke a large number of invalidation messages to 
the private levels. These invalidation requests replace the data 
needed by the processors which may still be useful. Subsequent 
misses will require extra communication with the directory. In 
contrast, MOSAIC leaves these data in the private levels 
avoiding extra misses in the sparse directory and data travelling 
through the network. When the difference in the number of 
misses between the two protocols is small and applications 
have a high sharing degree, broadcast messages of the 
reconstruction requests are more noticeable. With highly 
contended shared data, such as in numerical applications, the 
replacement algorithm of the directory inhibits evictions of 
actively used data and therefore the external invalidations in 
caches with BASE are fewer (at least with directory 
configurations that are not highly constrained). Under this 
configuration MOSAIC memory misses might increase the 
traffic due to the multicast traffic required to deal with them. 
Although this multicast traffic might be avoided using simple 

 
Fig. 6. (a) Average network link utilization of MOSAIC normalized to a duplicate tag directory, varying directory capacity and associativity. 

 (b) Average network link utilization of MOSAIC normalized to BASE directory. 
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solutions such as [36], it seems irrelevant in most applications. 
The most relevant case is IS, which has a large MKPI. Even in 
these cases, the extra traffic is less than 10%. In server 
applications, shared blocks rarely change their state (from S) 
and they have the same probability to be evicted as private data 
blocks. Consequently, the number of invalidations of useful 
data in private caches is larger. The result is that the extra 
traffic required to deal with this situation is much greater than 
with MOSAIC.  

The previous discussion partially addresses the potential 
added costs. To complete it, we need to look at the energy 
consumption, with emphasis on the cache hierarchy. Results of 
this analysis are shown for both protocols in Fig. 7 when using 
a 2-way associative sparse directory with three different sizes: 
128KB, 64KB and 16KB. The results have been normalized to 
128KB and a 2-way directory size of BASE protocol. The 
results are coherent with the traffic results: MOSAIC reacts in 
a more energy efficient way than the BASE protocol when the 
directory size is constrained. Therefore, we can conclude that 
the extra costs derived in the bandwidth-directory tradeoff 
overhead are favorable in our proposal.  

VII. SCALABILITY ANALYSIS 
To complete the cost analysis, we study how MOSAIC 

reacts in a CMP with 16 cores. In this system configuration we 
double the number of LLC banks and use a 6x6 mesh to 
connect them with private caches and four memory controllers. 
We maintain the remaining configuration parameters 
unchanged. To scale on-chip cache bandwidth, the number of 
banks and consequently the network has to be scaled up [28]. 
Comparing the results in Fig. 6(a) and Fig. 8, it can be seen that 
the differences are unnoticeable for most of the applications, 
even in extreme situations such as the one corresponding to a 
2-way set associative directory with capacity to track an eighth 
of the private caches, which consumes only 7% more on 
average than a Duplicate Tag Directory. Like in the 8-core 
CMP, the server applications, due to their high sharing degree 
of read-only data, are the most sensitive to directory structure. 
Even in these cases, with a quarter of the directory capacity, 
the average extra traffic is below 10%. Although no 
performance or energy results comparison with a conventional 
protocol is provided for this configuration, it should be noted 
that these results are even better than the obtained in the 8-core 
CMP configuration. The rationale for this is that misses (due to 
directory invalidations) in private caches take longer to be 
resolved in LLC due to the larger size of the system. 

Given the complexity of the evaluation environment and 
the architecture of the system evaluated, we cannot increase the 
number of cores simulated beyond this point. Nevertheless, 
comparing the evolution from 8 to 16-core CMP systems, we 
can deduce that the progression with larger number of cores 
might be similar. Since extra traffic will be proportional to the 
number of cores, the bandwidth overhead compared with an 
unfeasible Duplicate Tag Directory in bigger CMPs or with 
more realistic private cache hierarchies will be similar. Finally, 
note that to prevent on-chip and off-chip bandwidth impact on 
performance when increasing the number of cores in the chip, 
on-chip interconnection network bandwidth has to be extended 
[34]. In our particular case the bisection bandwidth has 
increased 50%, (from 4 to 6 bidirectional links), which is 
substantially larger than MOSAIC’s traffic overhead in the 
most unfavorable directory configurations. Consequently, it 
seems reasonable to assume that MOSAIC will scale up for 
much larger systems. 

 
Fig. 8. Link utilization of MOSAIC normalized to a Duplicate Tag Directory 
(128-way associative, 256KB), varying directory capacity and associativity in 

a 16-core CMP. 

VIII. CONCLUSIONS  
The combination of complexity and scalability of our 

proposal suggests that it might be an interesting alternative for 
future many-core cache coherent CMPs.  Since MOSAIC is 
quite insensitive to the directory configuration, the overhead of 
this structure in a large-scale system might be marginal. 
MOSAIC amalgamates the bandwidth scalability of a 
conventional directory with the elegancy of the Token 
Coherence correctness substrate, achieving a new approach 
capable of dealing with the problem of cache coherence in 
large-scale systems. All without incurring in noticeable 
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complexity or energy cost, which in our opinion, is a 
noteworthy finding. 
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