
The Case for a Scalable Coherence Protocol for
Complex On-Chip Cache Hierarchies in Many-Core

Systems
Lucía G. Menezo Valentin Puente Jose Angel Gregorio

University of Cantabria
Santander, Spain

{gregoriol, vpuente, monaster}@unican.es

Abstract—This paper introduces a new coherence protocol that
addresses the challenges of complex multilevel cache hierarchies
in future many-core systems. In order to keep coherence protocol
complexity bounded, inclusiveness is required to track coherence
information across levels in this type of systems, but this might
introduce unsustainable costs for directory structures. Cost
reduction decisions taken to reduce this complexity may introduce
artificial inefficiencies in the on-chip cache hierarchy, especially
when the number of cores and private caches size is large. The
coherence protocol presented in this work, denoted MOSAIC,
introduces a new approach to tackle this problem. In energy
terms, the protocol scales like a conventional directory coherence
protocol, but relaxes the shared information inclusiveness. This
allows the performance implications of directory size and
associativity reduction to be overcome. Contrary to the common
belief that inclusiveness is inescapable when attempting to
maintain complexity constrained, MOSAIC is even simpler than a
conventional directory. The results of our evaluation show that
the approach is quite insensitive, in terms of performance and
energy expenditure, to the size and associativity of the directory.

Keywords – coherence protocol; multi-core; CMPs

I. INTRODUCTION
Among academia and industry, [1][2][3][4][5][6], the

consensus is that Cache Coherence could extend its current
predominance in future chip multiprocessors (CMP). In order
to sustain future performance improvement, systems will need
to increase the number of cores per CMP. To successfully do
so, challenging problems such as the off-chip bandwidth wall
will have to be faced. As is well known [7], providing a large
on-chip cache is one of the most effective ways of mitigating
this problem. Nevertheless, a hardware truism is that plain
large capacities and fast access are not possible. To deal with
these problems, the approach followed by current commercial
systems is to use complex on-chip cache hierarchies, usually
with three levels of cache, the two closest to the processor
containing private copies and the last level cache (LLC)
somehow shared among all the cores in the CMP. Complex
cache hierarchies are intended to provide short-steps in a
“stairway” to main memory that is moved further away from
the core. The most common number of levels used nowadays is
three [4][5][2], but this is subject to change in future systems,
some commercial systems already using four levels [8].

The responsibility of the coherence protocol is to ensure
that all the potential copies of a memory block scattered over

different caches are coherent. In other words, any processor
should see the same content of all the memory locations under
any circumstance. A large number of cores and complex cache
hierarchies might increase coherence protocol responsiveness.
On the one hand, having a large number of cores in the chip
makes it unfeasible to rely on broadcast-based coherence
protocols. Although in current commercial CMPs this is the
predominantly used approach [2][4][5][9] it has foreseeable
difficulties to achieve success with larger numbers of cores in
the system, due to their higher energy requirements [10]. On
the other hand, complex cache hierarchies increase the
likelihood of having multiple copies of shared blocks scattered
over private levels, which, as we will show later, is challenging
for pure directory-based coherence protocols. The private
section of the cache hierarchy in current systems is quite large,
in order to achieve progressive hit-times [11] throughout the
different levels of the memory hierarchy. As the memory wall
effects become more relevant, more on-chip cache capacity
will be required and therefore large private caches will be
needed in the medium term. In the long term, with the advent
of 3D stacking or beyond-CMOS technologies, this tendency
will be accentuated. Under these conditions, the amount of
precise sharing information required by directory protocols in
shared level caches or directories will be increased.
Additionally, when the aggregate private cache available to
each processor becomes larger, the access pattern perceived at
the structures where the sharing information is kept will
diverge faster than the one actually executed by the cores [12].

Under the previously depicted context, we have developed
a coherence protocol suitable to confront the problem
comprehensively. MOSAIC1 is constructed on top of a
conventional directory protocol [13], but instead of using
inclusiveness to guarantee system correctness, MOSAIC will
use a token coherence correctness substrate [14]. The proposal
inherits the Token Coherence protocols’ simplicity, their lack
of precise sharing knowledge and the power efficiency of
conventional Directory protocols. Additionally, MOSAIC
circumvents not only most of the multicast traffic of Token
Coherence, but also the inelegant starvation avoidance
mechanisms needed due to the lack of serialization points.
Although from a performance and a cost point of view non-
inclusiveness is desired, the common assumption is that
inclusiveness is inescapable to keep coherence protocol
complexity attainable [15][12]. As a matter of fact, MOSAIC is

1 Due to the 6 states used in it: M (modified) O (owned) S (shared) A

(allocated block) I (invalid) C (constructing)

This work has been supported by the Spanish Ministry of Science and
Innovation, under contract TIN2010-18159, the Spanish Ministry of
Education, under grant PRX12/00006, and by the HiPEAC European Network
of Excellence.

978 -1-4799-1021-2/13/$31.00 ©2013 IEEE 279

simpler than a plain directory coherence protocol and any
block stored in private caches may not be tracked (i.e. no entry
will necessarily be allocated in the directory). The protocol is
engineered to reconstruct the entry under demand (i.e. if a core
misses at its private cache levels for an untracked cache block
that is stored in other cores’ private cache). We will use token
counting to guarantee coherence correctness (i.e. single writer,
multiple readers) and to filter unnecessary traffic. Although our
proposal is utilizable using in-cache or sparse directories, we
will focus our attention on sparse directories [13]. We will
show that even with extremely small directories and/or
associativity, it is possible to sustain the performance and
energy consumption of the system. The key aspect of this
remarkable achievement is that token counting allows the data
stored in LLC to perform directory entry reconstructions
without any extra traffic. As the reader may remember, token
coherence [14] is based on assigning a fixed number of tokens
per cache block and requires at least one token to read and all
of them to write. The most common case is that the data
accessed will be private so LLC will have data with all the
tokens. Taking this into account, LLC will, in most cases, have
all the tokens, making it unnecessary to broadcast a message to
reconstruct the block. In this way, LLC data will serve
indirectly as the most effective filter to determine whether a
data block is shared or not. To our knowledge, this is the first
proposal that uses LLC data cache contents to effortlessly filter
most of the on-chip traffic regardless of the complexity of the
directory.

II. MOTIVATION

A. Directory Schemas
Traditional directory-based coherence protocols need a

structure where sharing information, i.e. sharer vector and
block state, is kept all the time. There are two main approaches
to keep this information: in-cache and sparse directories [13].

For in-cache directories, each block stored in LLC has the
tag and data attached to the block state and the sharers
information (sharers bit vector, pointers, etc). The coherence
controller uses this information to deal with incoming requests
and having a precise knowledge of the block’s sharing status is
necessary to guarantee correctness. Therefore, in this case LLC
inclusiveness with the previous level caches is necessary
because it is the only way to have knowledge of private level
contents. For small private levels, this approach has a
substantial overhead because, in order to keep track of the
sharing status of a handful of data blocks, any LLC block has
to have a substantial storage space reserved per block (at least
log2P bits for P processors).

If we take this into account, sparse directories seem a better
approach for CMPs, because directory entries are allocated
under demand and therefore the overhead is proportional to the
aggregate private cache levels size (and not to the LLC size).
When a block arrives at the chip in response to a request, a new
directory entry is allocated. It will have to include at least, the
block tag, the block state and the sharer vector. This entry is
allocated in a separate structure from the data. In current
NUCA caches, to guarantee scalability, the most extended
strategy is to bank the directory over the chip, keeping the data
and directory slices connected to the same router [16]. In most
cases, the address-to-slice mapping used is statically

determined by the lowest bits (closest to the byte offset) of the
address. The capacity and associativity of the directory has to
be sufficient to keep private-level cache tags. In small systems
[17] with small private caches and low associativity, the
coverage can be full, commonly denoted Duplicate Tag
Directory. Nevertheless, for medium-to-large numbers of
cores, there is no feasible way to use such large-scale
associativity, it only being possible to keep a subset of L1 tags
and enable conflict misses in it through an associativity
reduction [18].

B. Inclusiveness implications with large private caches
The previous discussion assumes an inclusive directory, i.e.

any block stored at any private cache level should have an
entry allocated in the directory structure. This significantly
simplifies coherence protocol implementation and verification
effort [15]. Unfortunately, in a many-core CMP, the aggregate
private capacity could be substantial. While L1 has to be small
enough to attain core clock cycle, L2 should attenuate the
latency of the presumably large L3 cache with a suitable hit-
rate. As for commercial systems, the average private capacity
of L2 is between 1/8 and 1/4 of L3 size. Similar optimal
capacity ratios have been indicated by academic works such as
[12]. The relevance of the hit-rate in private L2 cache makes it
necessary to use highly associative caches, with at least 8
ways. Combining these three factors (large number of cores,
large private caches and large cache associativity), the
complexity of a Duplicate Tag Directory is unsustainable [18].
If either of these values is not sufficient, private block evictions
will occur because of the lack of space available in the
directory and so the system performance may be affected [19].

C. Previous approaches to the problem
Since directory-based coherence protocols are the most

suitable choice for large-scale CMPs in energy terms,
significant previous work was done to tackle the
aforementioned problems. For sparse directories, works such as
[19] only allocate directory entries for shared blocks,
minimizing the pressure on the storage structure. Orthogonally,
works such as [20][21] proposed skewed replacement
algorithms to minimize directory conflicts. Other approaches
propose minimizing the sharing information per directory entry
in order to minimize the evictions [16][22]. Finally, solutions
such as [23] opt for directory information reconstruction based
on hardware probing. A comprehensive review of previous
strategies can be read in [18]. All of these methods assume a
conventional directory-based protocol and they do not alter the
basic operation of the coherence protocol. For this reason, our
approach could be combined with any of them in order to
further improve the coherence protocol scalability.

III. MOSAIC
In contrast to how the aforementioned proposals confront

the problems derived from inclusiveness, we choose a different
approach: a new coherence protocol that does not require
inclusiveness to guarantee correctness and which is still
considerably simpler than a traditional directory protocol.
Next, we will detail how the approach works.

280

A. Conceptual Approach
The proposal is focused on reducing one of the main

problems that the directory approach has: the space needed to
hold the coherence information for all the cache blocks stored
in the private levels. The cost of the directory is determined by
the size and plurality of the private levels. With a Duplicate
Tag Directory, such as the one used by [6], it is necessary to
have in the directory as many sets as there are in the private
levels and the associativity for each of them has to be at least
the product of the private levels’ associativity by the number of
processors. This would make the required associativity
unfeasible, due to the large values needed if we use a large
number of processors and a large private cache capacity, so this
solution will not scale beyond a modest number of processors.
To provide more reasonable associativity, yet keep the
coherence information needed in most cases, it is necessary to
increase the number of entries in the directory. This solution
implies that new conflicts will appear because of coincident
requests from different addresses requiring the same entry.
These conflicts may induce the eviction of actively used blocks
from the private cache levels. In contrast, under these
situations, MOSAIC will not evict a block from the private
level just because there is not enough space in the directory to
hold its coherence information. In other words, directory
evictions will be silent. Therefore, when an entry is being
evicted from the directory, private copies are not invalidated.
Consequently, after a miss in the directory, valid copies of the
block might be in any of the private levels, in the LLC data
slices or in off-chip memory.

After any subsequent miss in the directory, in order to
guarantee coherence correctness, an on-chip reconstruction of
the directory entry is initiated. This process will end when all
the coherence information associated with that block (i.e. the
sharers of the block and their state) has been collected. Token
counting [24] is used to perform this process. This
methodology states that all the block tokens (which are at least
equal to the number of processors in the system) are required
for a write operation and at least one token is required for a
read operation. This approach makes the process simple and
avoids negative acknowledgements [9]. To explain the process,
Fig. 1 presents a simple example started when the processor P0
sends a read request. After missing in its private cache (which
might be composed of multiple levels) the request is forwarded
to the directory slice corresponding to that address (step 1). If
there is no valid entry for this address, the request is forwarded
to the last-level cache associated with the address (step 2). In a
correctly designed system, directory and LLC slices for the
same address will be side by side [13]. If all the tokens of the
cache block are stored in the LLC, the sharing information is
directly reconstructed, since that means there is no other sharer
in the system for this address. If not, a multicast is sent to all
private caches and memory controllers (step 3). In this
particular case, since the CMP has three processors, the tokens
per block will be fixed to three, two being stored in P1 private
cache and one in P2 private cache. To implement the owner
state, Token Coherence uses a particular token denoted Owner
Token to identify the forwarder of the data in a read operation.
In this case, we assume that P1 has the owner token (and
consequently the block is in owner state (O)). If the owner
token was located in LLC, data would be forwarded in parallel

with the multicast request to the other private L1 caches. In this
particular case P1 will forward a token and a copy of the data to
P0 (step 4). Simultaneously the cores with tokens will notify
the directory about the number of tokens they have for that
block, if they have any, including P0 with its new token (not
shown in the figure). This information will be stored in the
corresponding entry, silently evicting the previous one. For a
write operation, the process will be similar with the difference
that all of the sharers will forward their tokens to the requestor
(rendering their copies invalid). After collecting all the tokens,
the requesting processor will notify the directory. If P1 had had
the block in a modified state, a copy of the data and the
required tokens would have been forwarded to P0.

Token counting is a key component in our proposal

because it simplifies all the handshaking protocol used to
reconstruct directory entries. Since the directory behaves like a
serialization point, concurrent operations initiated by different
processors in the same cache block will never end up suffering
starvation. In this way, the directory coherence controller will
avoid these problems without requiring persistent request [14]
or added token tracking facilities [25][10]. Above all, token
counting is useful to filter most of the multicast messages and
speed up the directory entry reconstruction. As LLC capacity
will be substantially higher than the directory’s, this will be the
most habitual scenario for actively used private data blocks,
which is the common case. Therefore, in most situations the
data and all the tokens will be allocated there. If all tokens are
in LLC, it is known that no other copy of the block is located in
any of the private caches and the directory entry reconstruction
will proceed without broadcast. Additionally, it should be
noted that actively shared data (such as those associated with
frequent state changes, i.e. producer-consumer scenarios) will
require frequent accesses to the directory. A plain LRU
replacement algorithm in that structure, even with a low
associativity, will evict entries of private data sooner.

As the reader might appreciate, the protocol is conceived to
trade directory overheads for bandwidth. Although there are
other similar solutions following this overhead-bandwidth
tradeoff (such as [13][16][23][22]), in contrast with them,
MOSAIC habitually uses a regular directory and requires extra
bandwidth consumption in fringe situations. The key point is to
use the large LLC capacity to indirectly filter unnecessary
snoops without adding complexity in the coherence protocol or
using any auxiliary hardware structure.

P0

I 0 N/A

Directory Slice

Data_Slice

On-chip network

P1

O 2 DATA

P2

S 1 DATA

I 0 N/A

I Sharers

Pr
iv

at
e

C
ac

he
s

1

2

3

4

Mem
Ctrl.

State Tokens Data

 Last Level Cache

Fig. 1. Sketch of an example of a directory entry reconstruction.

281

The benefits provided by MOSAIC will decrease the
number of misses in private cache, which will reduce not only
average access time, but also bandwidth consumption. In the
previous example P1 and P2 will not be invalidated when
directory entry is replaced. Therefore, the extra bandwidth
required by MOSAIC can be compensated in conventional
sparse directories. Although the case of in-cache directory is
not studied in this paper, the effect will be more relevant since
an early directory eviction will imply a subsequent memory
access for later processor requests [12].

B. Protocol Details and Complexity Discussion
The states of each data block that have been considered are

those corresponding to the token-based protocol [14]: Invalid
(I), Modified (M), Owner (O), and Shared (S). There are two
new states of the sparse directory, Constructing (C) and
Allocated (A), which provide the key implementation details of
the MOSAIC protocol.

Each of the entries in the directory will hold the coherence
information about the address it makes reference to. Besides
the necessary state of the block, this information is summarized
in the sharers of that block, the core holding the owner token
(as it will be in charge of forwarding data if necessary) and a
token-count field of that block (we will see next why this is
necessary). We assume the sharers are kept as a full bit vector,
but we could use any other existing method [18][20] to
maintain this sharers information.

In Table 1 a simplified table-based state-transition table
[26] of a sparse directory controller is shown. With this table,
states, events and main actions are represented. For each row,
the first field corresponds to a possible state of an entry in the
directory. There are three main states (I, C, A) and their
corresponding transient states for performance improvement. A
brief description of each one is shown in Table 2.

Each of the columns in Table 1 represents the event

triggered by the controller when receiving a specific message.
Each table cell shows the main actions taken by the controller
and, in the bottom right corner, the state the block changes to in
that transition (if not defined, the entry stays in the same state).

When receiving a request (GETS or GETX), if the block is
not present in the directory (state I), a reconstruction process
like the one explained in the previous section is initiated. In
order to avoid putting the reconstruction process in the critical
path when dealing with a request, MOSAIC piggybacks the
original requestor and the type of request to the reconstruction
message. This way, the reconstruction and resolution of the
request are done in parallel. This is the reason why two
construction states (C_S and C_X) are needed. During the
reconstruction, when the controller receives information about
some tokens’ location, it adds that sharer to the sharers bit
vector and updates the number of known located tokens. When
the request triggering the reconstruction is a read request (state
C_S), the cache with the owner token of the block will send a
copy of the data with one of the tokens to the requestor and
will inform the directory about how many tokens it has left.

TABLE 1. MOSAIC DIRECTORY CONTROLLER TRANSITIONS TABLE

 GETS GETX Token Info

Last
Token
Info

Unblock PUT
Data

PUT
Tokens

Silent
Replace

Replace
with tokens

Ack From
LLC

I
• initiate
reconstruction

• initiate
reconstruction • write data in LLC • write tokens in

LLC
 C_S C_X

C_S wait wait

• add sharer
• update num

tokens
known

• add last
sharer

• wait for
Unblock

• add last sharer • bounce data to
requestor • update tokens wait wait

 A

C_X wait wait
• add exclusive

sharer • bounce data to
requestor

• bounce tokens to
requestor

wait wait
 A

A

• forward
request to
Owner

• multicast
request to all
sharers • update tokens • update tokens

• invalidate
block

• invalidate
block

• write
Tokens in
LLC

 A_S A_X I A_I

A_S wait wait • add new sharer
• update tokens • update tokens wait wait

 A

A_X wait wait

• remove old
sharers

• add exclusive
sharer

• bounce data to
requestor

• bounce tokens to
requestor

wait

 A

A_I wait wait • write data in LLC • write tokens in
LLC

• remove
block

 I

TABLE 2. DESCRIPTION OF MOSAIC’S MAIN COHERENCE PROTOCOL
STATES

States Description

I Invalid. Block is not present in the sparse directory.

C_S Constructing the block after receiving a read request (GETS) from a
core.

C_X Constructing the block after receiving a write request (GETX) from a
core.

A Allocated. Block is fully constructed with all the coherence
information about that block.

A_S Allocated and a read request (GETS) has been received from a core.
Waiting for an unblock message.

A_X Allocated and a write request (GETX) has been received from a core.
Waiting for an unblock message.

A_I Invalidating a block.

Events

States

282

When the requestor finishes its request, it sends an unblock
message. The directory will always wait for the requestor’s
unblock message to finish the reconstruction. This will
guarantee that no other request is dealt with until the entry is
fully constructed and the request is completely resolved. If the
request is a write request, all the caches with a copy of the
requesting block will have to forward their tokens to the
requestor, which will send the unblock message when it has
collected all of them and so its request is finished. In this case,
the directory controller will add the requestor as the exclusive
sharer of the data (state C_X, event Unblock).

If the coherence information needed is in the directory
(state A), all the data locations are known so the directory only
has to forward the request to the appropriate sharer. If it is a
read request (GETS), it sends it to the cache holding the owner
token; if it is a write request (GETX), it sends it to all the
sharers of the block.

The directory needs to be informed about all the
replacements occurring in the private levels in order to have
updated information about the sharers if the block is
constructed. Any private L2 cache replacing a block sends a
request with the tokens (PUT Tokens) or with the data if it has
the owner token (PUT Data). If the entry is not constructed
(state I), data and tokens are written back to LLC. If the block
is being constructed (C_S or C_X) or the directory is dealing
with a request (A_S or A_X) then the directory might be the
one in charge of resolving the pending request with the
replaced data so it bounces it to the requestor. If the block is
constructed and there is no pending request (state A) then the
directory updates the number of tokens at the entry (this is why
it has to hold a token count field) or writes back data in LLC.

The rest of the events, state transitions, and actions are self-
explanatory. However, the interested reader can access the full
protocol specification (and the conventional directory) at [27].

IV. EVALUATION METHODOLOGY

A. System Configuration
To analyze MOSAIC, we will use aggressive out-of-order

cores, similar to those used by commercial systems [2][5][4].
The rationale behind this decision is that instruction-level
parallelism (ILP) performance should not be underestimated
[6]. Out-of-order processors will exert a high pressure on the
coherence fabric. Since the number of pending instructions per
core could be large, the concurrent coherence operations could
be orders of magnitude bigger than those observed with a large
count of simple in-order cores.

In our particular case, we will use 4-wide issue cores with
128 in-flight instructions and up to 16 pending memory
operations. The number of cores chosen in our evaluation is 8
and 16 cores per CMP. The on-chip hierarchy configuration,
like in [2][5][4], is composed of three levels. The first two are
private, strictly non-inclusive layers. The third level is similar
to the one proposed in [5], shared following a static NUCA
[28] approach. In contrast with this system, instead of an ultra-
wide ring network (which is imposed by the coherence
protocol used) we will use a mesh network, which is
characterized by better on-chip bandwidth scalability and better
performance/cost ratio. We will assume that the routers in the
network can handle multicast traffic natively [29]. Although
for this size of system a broadcast protocol might perform

better [25][10], our objective is to prove that MOSAIC is
capable of overcoming classic directory limitations, which will
be necessary with a much higher number of cores in the CMP.
Nevertheless, to evaluate systems with tens or hundreds of
cores is unfeasible with current evaluation tools because of the
computational effort of such a task and the limited availability
of scalable workloads. Comparing MOSAIC with a
conventional protocol, varying the directory properties (i.e.
associativity and capacity) might be enough to demonstrate the
advantages of the proposal. Similarly, studying the evolution of
the benefit and drawbacks of 8-core CMP compared to 16-core
CMP will allow us to glimpse the scalability of the idea with a
higher number of cores.

Although MOSAIC can work in both sparse and in-cache
directories, we will focus our analysis on the former, since they
have less storage overhead [13][18] and the cache evictions
due to directory conflicts have lower impact on performance.
Although not shown in the paper, we have carried out a similar
performance analysis with in-cache directory designs and
MOSAIC provides higher benefits than it does in sparse
directories. A summary of the main system parameters used in
our analysis is shown in Table 3.

B. Workloads & Simulation Stack
We will use GEMS [33] as the main tool for our evaluation.

With GEMS, it is possible to perform full-system simulations.
Coherence protocols have been implemented using the SLICC
language (Specification Language for Implementing Cache
Coherence). For the power modeling we use CACTI 6.5[34]
for modeling the cache and DSENT [35] for the network.

Ten workloads, shown in Table 4, are considered in this

TABLE 3. SUMMARY OF 8-CORE CMP SYSTEM CONFIGURATION
(OR 16-CORE CMP)

C
or

e
A

rc
h.

 Functional Units 4×I-ALU/4×FP-ALU/ 4×D-MEM
Instruction Window size / Issue
Width 128, 4-way

Frequency / Processor Count 3Ghz, 8 (or 16)

Pr
iv

at
e

C
ac

he
s

(L1)Size/Associativity /
Block Size / Access Time 32KB I/D, 2-way, 64B, 1 cycles

(L2)Size / Associativity/
Block Size / Access Time

128KB Unified, 4-way, 64B, 2
cycles, Exclusive with L1

Sh
ar

ed

L3
 Size / Associativity / Block Size 16MB (or 32MB), 16 (or 32)×1MB,

16-way, 64B
NUCA Mapping Static, interleaved by LSB
Data Slice Size / Access Time 1MB / 6 cycles

Mem. Capacity / Access Time / Memory
Controllers / BW

4GB / 240 cycles / 2 / 32GBs (or 4 /
64GBs)

N
et

w
or

k Topology / Link Latency / Link
Width 4×4 (or 6×6) Mesh / 1 cycle / 16B

Router Latency / Flow Control /
Routing 1 cycle / Wormhole / DOR

TABLE 4. MULTITHREADED WORKLOADS (8P AND 16P)

SERVER
[30]

OLTP IBM DB2 DBMS, TPC-C like
10000 Transactions

Apache Apache web server, SpecWeb
like, 25000 Transactions

JBB SpecJBB, 70000 Transactions

Zeus Zeus, SpecWeb like, 25000
Transactions

NPB[31]
Integer Sort (CG) CLASS A
Fast Fourier Transform (FT) CLASS W
LU Diagonalization (LU) CLASS A

SPEC [32]
Astar Native, 7 thr.(8P), 15 thr. (16P)
Hmmer Native, 7 thr.(8P), 15 thr. (16P)
Omnetpp Native, 7 thr.(8P), 15 thr. (16P)

283

study, including both multi-programmed and multi-threaded
applications (scientific and server) running on top of the
Solaris 10 OS. The numerical applications are three of the NAS
Parallel Benchmarks suite (OpenMP implementation version
3.2 [31]). The server benchmarks correspond to the whole
Wisconsin Commercial Workload suite [30]. The remaining
class corresponds to multi-programmed workloads using part
of the SPEC CPU2006 suite [32] running in rate mode (where
one core is reserved to run OS services).

We model hardware-assisted TLB fill and register window
exceptions for all target machines. Multiple runs are used to
fulfill strict 95% confidence intervals (error bars are not visible
in most cases). Benchmarks are fast-forwarded to the point of
interest, during which page tables, TLBs, predictors, and
caches are warmed up. In iteration-based applications, such as
NPB, a warm checkpoint is taken in the middle of the
execution and with a reduced number of iteration runs.
Transactional workloads are warmed up by running hundreds
of thousands of transactions. The chosen workloads have been
selected trying to cover diverse use scenarios, varying the
sharing degree (from none in SPEC applications to a large
amount in Server Workloads) and sharing contention (from
none in SPEC to a large amount in scientific applications).
Among the NAS applications, we chose the 3 with the highest
sharing contention. From the SPEC suite, we chose 3
applications with a variable range in working set size.

V. IMPACT OF DIRECTORY CONFIGURATION ON PERFORMANCE
When the number of cores is large, conventional directory

protocols have to face limitations in two main factors, capacity
and associativity. Next we will analyze how sensitive
MOSAIC is to both parameters and compare its results with
those from a conventional sparse directory implementation.
The reference point in this analysis will be a directory with
duplicate tags. Since under this configuration there will not be

private cache invalidations due to directory misses, there will
be no performance differences between MOSAIC and
conventional protocols. We will start with small private caches
of a 2-way 32 KB L1 I/D and a unified 4-way victim L2 cache
of 64KB. Assuming in both cases a block size of 64 bytes, for
these cache sizes, the number of required entries in the
directory to avoid capacity misses is 2048*#cores. Until
section VII, we will assume that the number of cores in the
CMP is eight. Therefore, assuming 8 bytes per directory entry
(enough to store tag and sharing information), the total
directory size required to avoid capacity misses will be 128KB.
The storage overhead will grow with the number of cores since
the aggregate private cache will increase (the number of entries
needed in the directory) and the sharing vector will be larger
(the size of the entries in the directory). With the aim of
minimizing the access time to data in data slices and avoiding
bottlenecks in the accesses, we distribute the directory in 16
slices (as many slices as the LLC). The slice interleaving of
data and directory entries over LLC uses the least significant
bits of the address. For the same addresses, the directory slice
and data slice are 1 cycle apart. To avoid all conflict misses in
the directory, the required associativity will be 64. This large
associativity is necessary because on each entry we need as
many ways as the sum of both of the private levels’
associativity times the number of cores (i.e. (L1I associativity
+ L1D associativity + L2 associativity) * #cores).

A. Sensitivity to Conflict Misses in the Directory.
Initially, we will determine the sensitivity of a conventional

directory protocol and MOSAIC when the associativity is
reduced, i.e. how the two protocols react when the number of
conflict misses in the directory is increased. In order to perform
this analysis, we keep the directory capacity fixed at 128KB
and modify the associativity from 64-way to 1-way per set. As
associativity goes down the number of conflicts grows, because

Fig. 2. Normalized number of misses at the private levels when sparse directory associativity is changed for

a conventional coherence protocol (BASE) and MOSAIC.

Fig. 3. (a) Mosaic execution time normalized to BASE, while varying the associativity of a fully sized sparse directory (i.e.16K entries). (b) Mosaic execution time

normalized to BASE, while varying the associativity for a directory with one eighth of fully sized sparse directory (i.e., 2K entries).

0

0.5

1

1.5

2

64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1

BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus

Misses L2 Misses L1I Misses L1D

0.5
0.6
0.7
0.8
0.9

1
1.1 64w128KB 32w128KB 2w128KB 1w128KB

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

64w16KB 32w16KB 2w16KB 1w16KB

(a) (b)

284

even though there is space for all potential blocks stored in
private caches, some of them may conflict in the directory.

Fig. 2 shows how the base Directory protocol (to avoid
confusion from now on it will be denoted as BASE) and
MOSAIC impact in cache level behavior when the number of
directory conflicts is increased. Unsurprisingly, BASE
directory has a bad reaction to that change in the associativity,
obliging a large number of misses in private levels due to
directory invalidations. In some applications, such as Omnetpp
(where the cores are not sharing any data), the misses in those
levels are multiplied by two. Nevertheless, and as expected,
MOSAIC is completely insensitive to any associativity
modifications. These results indicate that the implementation
cost can be the same as the simple directly mapped
configuration without any performance penalty.

The final performance differences depend on each type of
application, i.e. its behavior in private caches using a duplicate
tag directory. Fig. 3(a) shows these results, indicating that the
MOSAIC protocol could be up to 40% faster than the BASE
protocol. For the combination of system size and applications
used, the most remarkable effects are found in extreme
situations when even with capacity to track all private blocks,
the performance will fall, on average, 12%. Previous works,
such as [18], have identified limited associativity as a major
issue in directory coherence protocols. MOSAIC overcomes
this problem completely since a simple direct mapped directory
is capable of maintaining the performance.

B. Sensitivity to Capacity & Conflict Misses in the Directory
The second effect that might influence performance is the

capacity misses in the sparse directory. The combination of
capacity misses induced by limited directory storage might
increase conflict misses. To compare how both effects might
impact on each protocol, we reproduce the previous analysis,
but reducing the directory capability to track only an eighth of
the private caches capacity, i.e. up to 2K blocks. Fig. 3(b)
reproduces the results provided in Fig. 3(a) with the new
directory capacity. In this new configuration, misses in private
cache for BASE, although not shown, are substantially higher.
After reducing the size of the directory, even with an
associativity of 64, capacity conflicts in the directory have a
relevant impact on performance, degrading it up to 20%. The
capacity misses seem to be more relevant in applications with a
higher sharing degree (i.e. commercial workloads [30]).
Applications with a reduced working set (such as hmmer) are
less sensitive to capacity misses in the directory. With this
directory size, conflicts are more probable than in the fully

sized directory and consequently associativity now has a
greater influence on performance.

To understand how directory invalidations influence each
protocol, we provide the average access time for on-chip hits in
Fig. 4. Again, the dissimilar behavior of the two protocols is
notable. On some applications, MOSAIC shows half of the on-
chip latency of BASE due to the extra misses in private caches
in the latter. Those requests are mostly resolved by LLC with
extra added latency, which explains its growing contribution
when the directory caused evictions in the private caches are
more relevant. With MOSAIC, all the applications demonstrate
a higher contribution of the private L2. Moreover, for
applications with a high sharing degree, the broadcast
reconstruction message favors the forwarding between caches
as the Other L1 and Other L2 contributions show, and so
avoids an access to L3 as the conventional directory does. The
steady miss latency values obtained demonstrate MOSAIC’s
stability even in the most extreme configurations, a direct-
mapped directory with capacity to track just an eighth of the
private caches blocks.

C. Sensitivity to Directory Size in a Realistic Private Cache
configuration.

Up to now, we have been using limited private cache
capacity and associativity. If we consider the configuration of
commercial systems [2][4][5], L2 caches have between 1/8
and 1/4 of L3 capacity and both L1 and L2 have a larger
associativity. Therefore, we will next carry out a sensitivity
analysis for the size of the directory with a realistic
configuration for private caches. In this particular case, we try
to mimic the L2 cache configuration in Intel’s Nehalem (4-way
32 KB of L1s and 8-way 256 KB of L2). We will keep the

 Fig. 4. Average on-chip latency for a 16KB (2K entry) sparse directory when varying its associativity.

Fig. 5. MOSAIC execution time normalized to Duplicate Tag Directory,

for a Nehalem-like private caches configuration varying directory capacity.

0
2
4
6
8

10
12

64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1 64
 2 64
 2 32
 1 32
 1

BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus

La
te

nc
y

(P
ro

ce
ss

or
 C

yc
le

s)
 L3 Other L2 Other L1

Private L2 Local L1

0

0.2

0.4

0.6

0.8

1

1.2 16w512KB 16w256KB 16w128KB
16w64KB 16w32KB

285

associativity fixed at 16-way (like in the data banks) and vary
the capacity of the directory, from double [13] the full
directory (i.e. 640KB) to a tenth of full directory (i.e. 32KB).
Fig. 5 presents the average execution time for each application
normalized to the double-sized directory where even with the
smallest capacity, there is no performance impact. When
reproducing the same experiment for the BASE protocol, the
performance impact is greater than 20% in some cases.

VI. COST ANALYSIS: BANDWIDTH
AND ENERGY OVERHEAD OF MOSAIC

In light of the previous results, in contrast to a BASE
protocol, MOSAIC’s behavior is fairly independent of the
directory configuration. Since the rationale of MOSAIC is to
trade directory cost for on-chip bandwidth and additional
snoops in private caches, we need to analyze the energy
overheads. The first step in this analysis is to quantify how
directory cost reduction influences on-chip bandwidth
consumption. If the network is using routers with support for
handling multicast traffic [29], the real measure of bandwidth
and energy consumption for the interconnection network is
given by the average link utilization and not the end-point
traffic consumption [25]. Fig. 6(a) shows, for the initial
configuration (i.e. exclusive 32KB L1 and 64KB L2), the
average link utilization when the capacity of the directory or its
associativity is reduced. The values are normalized for a
duplicate tag directory, i.e. capacity for 16K entries (128KB)
and 64-way associative. The results are outstanding, showing
that on average and under the worst conditions (i.e. a 2-way
associative directory, with an eighth of the capacity of the full
directory) the traffic is just 5% higher than a duplicate tag
directory.

Focusing on each application, when there is no sharing
degree (such as the multi-programmed ones), applications are
completely insensitive to directory configuration. Since there is
no shared information, this is the expected behavior. More
noteworthy is the behavior of scientific applications, where
there is a substantial amount of shared and highly contended
data. In such cases, the directory replacement algorithm
prevents the eviction of actively shared data and entries of
private blocks are more prone to be replaced. Consequently,
traffic does not change. Server workloads seem to be the most
sensitive, since in this case the amount of shared data is large,
most of them being code. Therefore these blocks will be
accessed in read-only mode and the directory will be less

frequently accessed. As a consequence, the chances of evicting
an actively shared entry are higher than in numerical
applications and consequently so too are the chances of
requiring a multicast to reconstruct these entries. Nevertheless,
even in the most adverse (and unpractical) directory
configurations, this increment is below 20%, which is
substantially less than in broadcast coherence protocols
[10][14][25].

The key point for this behavior is that multicast is only
generated when, after a miss in the sparse directory, the data
and tokens available in LLC are not enough to reconstruct the
sharing information. If the block has all the tokens, we know
that there are no copies in any private caches and consequently
the multicast can be avoided. Since LLC can be very large, the
most usual case will be this one and, therefore, multicast will
be required only if the data is really shared. In contrast, if we
compare the bandwidth consumption of MOSAIC and BASE
protocols when the directory is simplified, the results are very
different. As Fig. 6(b) indicates, the BASE protocol requires
more on-chip bandwidth in most cases, especially when the
directory is highly limited. In the most extreme case, i.e. a
16KB, 2-way associative directory, BASE requires up to 40%
extra bandwidth consumption on average. The main reason for
this is that MOSAIC has fewer misses in the private caches and
directory evictions are silent. For instance, in SPEC
applications all processors have independent executions so the
conflicts that occur in the sparse directory with a conventional
directory provoke a large number of invalidation messages to
the private levels. These invalidation requests replace the data
needed by the processors which may still be useful. Subsequent
misses will require extra communication with the directory. In
contrast, MOSAIC leaves these data in the private levels
avoiding extra misses in the sparse directory and data travelling
through the network. When the difference in the number of
misses between the two protocols is small and applications
have a high sharing degree, broadcast messages of the
reconstruction requests are more noticeable. With highly
contended shared data, such as in numerical applications, the
replacement algorithm of the directory inhibits evictions of
actively used data and therefore the external invalidations in
caches with BASE are fewer (at least with directory
configurations that are not highly constrained). Under this
configuration MOSAIC memory misses might increase the
traffic due to the multicast traffic required to deal with them.
Although this multicast traffic might be avoided using simple

Fig. 6. (a) Average network link utilization of MOSAIC normalized to a duplicate tag directory, varying directory capacity and associativity.

 (b) Average network link utilization of MOSAIC normalized to BASE directory.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 64w128KB 64w64KB 64w32KB 64w8KB
2w128KB 2w64KB 2w16KB

0

0.2

0.4

0.6

0.8

1

1.2

1.4
2w128KB 2w64KB 2w16KB

(a) (b)

286

solutions such as [36], it seems irrelevant in most applications.
The most relevant case is IS, which has a large MKPI. Even in
these cases, the extra traffic is less than 10%. In server
applications, shared blocks rarely change their state (from S)
and they have the same probability to be evicted as private data
blocks. Consequently, the number of invalidations of useful
data in private caches is larger. The result is that the extra
traffic required to deal with this situation is much greater than
with MOSAIC.

The previous discussion partially addresses the potential
added costs. To complete it, we need to look at the energy
consumption, with emphasis on the cache hierarchy. Results of
this analysis are shown for both protocols in Fig. 7 when using
a 2-way associative sparse directory with three different sizes:
128KB, 64KB and 16KB. The results have been normalized to
128KB and a 2-way directory size of BASE protocol. The
results are coherent with the traffic results: MOSAIC reacts in
a more energy efficient way than the BASE protocol when the
directory size is constrained. Therefore, we can conclude that
the extra costs derived in the bandwidth-directory tradeoff
overhead are favorable in our proposal.

VII. SCALABILITY ANALYSIS
To complete the cost analysis, we study how MOSAIC

reacts in a CMP with 16 cores. In this system configuration we
double the number of LLC banks and use a 6x6 mesh to
connect them with private caches and four memory controllers.
We maintain the remaining configuration parameters
unchanged. To scale on-chip cache bandwidth, the number of
banks and consequently the network has to be scaled up [28].
Comparing the results in Fig. 6(a) and Fig. 8, it can be seen that
the differences are unnoticeable for most of the applications,
even in extreme situations such as the one corresponding to a
2-way set associative directory with capacity to track an eighth
of the private caches, which consumes only 7% more on
average than a Duplicate Tag Directory. Like in the 8-core
CMP, the server applications, due to their high sharing degree
of read-only data, are the most sensitive to directory structure.
Even in these cases, with a quarter of the directory capacity,
the average extra traffic is below 10%. Although no
performance or energy results comparison with a conventional
protocol is provided for this configuration, it should be noted
that these results are even better than the obtained in the 8-core
CMP configuration. The rationale for this is that misses (due to
directory invalidations) in private caches take longer to be
resolved in LLC due to the larger size of the system.

Given the complexity of the evaluation environment and
the architecture of the system evaluated, we cannot increase the
number of cores simulated beyond this point. Nevertheless,
comparing the evolution from 8 to 16-core CMP systems, we
can deduce that the progression with larger number of cores
might be similar. Since extra traffic will be proportional to the
number of cores, the bandwidth overhead compared with an
unfeasible Duplicate Tag Directory in bigger CMPs or with
more realistic private cache hierarchies will be similar. Finally,
note that to prevent on-chip and off-chip bandwidth impact on
performance when increasing the number of cores in the chip,
on-chip interconnection network bandwidth has to be extended
[34]. In our particular case the bisection bandwidth has
increased 50%, (from 4 to 6 bidirectional links), which is
substantially larger than MOSAIC’s traffic overhead in the
most unfavorable directory configurations. Consequently, it
seems reasonable to assume that MOSAIC will scale up for
much larger systems.

Fig. 8. Link utilization of MOSAIC normalized to a Duplicate Tag Directory
(128-way associative, 256KB), varying directory capacity and associativity in

a 16-core CMP.

VIII. CONCLUSIONS
The combination of complexity and scalability of our

proposal suggests that it might be an interesting alternative for
future many-core cache coherent CMPs. Since MOSAIC is
quite insensitive to the directory configuration, the overhead of
this structure in a large-scale system might be marginal.
MOSAIC amalgamates the bandwidth scalability of a
conventional directory with the elegancy of the Token
Coherence correctness substrate, achieving a new approach
capable of dealing with the problem of cache coherence in
large-scale systems. All without incurring in noticeable

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
128w256KB 128w128KB 128w64KB 128w32KB
2w256KB 2w128KB 2w64KB 2w32KB

Fig. 7 Total dynamic energy used by caches and network normalized to the directory-based coherence protocol with

an aggregate 128KB sparse directory. Different sizes: 128KB, 64KB and 16KB (8, 4 and 1 1KB per slice).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

12
8 16

64

64

12
8 16

12
8 16

64

64

12
8 16

12
8 16

64

64

12
8 16

12
8 16

64

64

12
8 16

12
8 16

64

64

12
8 16

BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC BASE MOSAIC

Astar Hmmer Omnetpp FT IS LU Apache Jbb OLTP Zeus

Network Sparse directory L3 L2 L1

287

complexity or energy cost, which in our opinion, is a
noteworthy finding.

ACKNOWLEDGMENTS

The authors would like to thank Jose-Angel Herrero for his
valuable assistance with the computing environment CPD
3Mares, as well as Viji Srinivasan and the anonymous
reviewers for all the useful comments and suggestions.

REFERENCES
[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache

coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
p. 78, Jul. 2012.

[2] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
Next-Generation Server Processor,” IEEE Micro, vol. 30, no. 2, pp. 7–
15, 2010.

[3] “Tilera. TILE-Gx 3000 Series Overview.,” 2011.
[4] M. Butler, “AMD ‘Bulldozer’ Core - a new approach to multithreaded

compute performance for maximum efficiency and throughput,” in
IEEE HotChips Symposium on High-Performance Chips (HotChips
2010), 2010.

[5] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, “Next generation
Intel® micro-architecture (Nehalem) clocking architecture,” in IEEE
Symposium on VLSI Circuits, 2008, pp. 62–63.

[6] J. L. Shin, H. Park, H. Li, A. Smith, Y. Choi, H. Sathianathan, S. Dash,
S. Turullols, S. Kim, R. Masleid, G. Konstadinidis, R. Golla, M. J.
Doherty, G. Grohoski, and C. McAllister, “The next-generation 64b
SPARC core in a T4 SoC processor,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 1, pp. 82–90, Feb. 2013.

[7] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: challenges in and avenues for CMP
scaling,” in 36th International Symposium on Computer Architecture
(ISCA’09), 2009, vol. 37, no. 3, pp. 371–382.

[8] F. Busaba, M. A. Blake, B. Curran, M. Fee, C. Jacobi, P.-K. Mak, B. R.
Prasky, and C. R. Walters, “IBM zEnterprise 196 microprocessor and
cache subsystem,” IBM Journal of Research and Development, vol. 56,
no. 1, pp. 1:1–1:12, Jan. 2012.

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[10] A. Raghavan, C. Blundell, and M. M. K. Martin, “Token tenure:
PATCHing token counting using directory-based cache coherence,” in
41st IEEE/ACM International Symposium on Microarchitecture, 2008,
pp. 47–58.

[11] S. Przybylski, M. Horowitz, and J. Hennessy, “Characteristics Of
Performance-Optimal Multi-level Cache Hierarchies,” in 16th
International Symposium on Computer Architecture (ISCA’89), 1989,
pp. 114 – 121.

[12] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer,
“Achieving Non-Inclusive Cache Performance with Inclusive Caches:
Temporal Locality Aware (TLA) Cache Management Policies,” in 43rd
IEEE/ACM International Symposium on Microarchitecture, 2010, pp.
151–162.

[13] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,”
Springer US, pp. 167–192, 1992.

[14] M. M. K. M. K. Martin, M. D. D. Hill, and D. a. A. Wood, “Token
Coherence: Decoupling Performance and Correctness,” in 30th
International Symposium on Computer Architecture (ISCA’03), 2003,
pp. 182–193.

[15] J.-L. Baer and W.-H. Wang, “On the inclusion properties for multi-
level cache hierarchies,” ACM SIGARCH Computer Architecture News,
vol. 16, no. 2, pp. 73–80, May 1988.

[16] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A
tagless coherence directory,” in 42nd IEEE/ACM International
Symposium on Microarchitecture, 2009, pp. 423–434.

[17] “OpenSPARC TM T2 system-on-chip (SoC) microarchitecture
specification,” 2008.

[18] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory
with flexible sharer set encoding,” in 18th IEEE International
Symposium on High Performance Computer Architecture, 2012, pp. 1–
12.

[19] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato,
“Increasing the effectiveness of directory caches by deactivating
coherence for private memory blocks,” in 38th International
Symposium on Computer Architecture (ISCA’11), 2011, pp. 93–104.

[20] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and
Associativity,” in 43rd IEEE/ACM International Symposium on
Microarchitecture, 2010, pp. 187–198.

[21] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 2011 IEEE
17th International Symposium on High Performance Computer
Architecture, 2011, pp. 169–180.

[22] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan, “SPATL:
Honey, I Shrunk the Coherence Directory,” in 20th International
Conference on Parallel Architectures and Compilation Techniques
(PACT’11), 2011, pp. 33–44.

[23] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel, “WayPoint :
Scaling Coherence to 1000-core Architectures,” in 19th International
Conference on Parallel Architectures and Compilation Techniques
(PACT’10), 2010, pp. 99–110.

[24] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token Coherence: a
new framework for shared-memory multiprocessors,” IEEE Micro, vol.
23, no. 6, pp. 108–116, 2003.

[25] L. G. Menezo, V. Puente, P. Abad, and J. A. Gregorio, “Improving
coherence protocol reactiveness by trading bandwidth for latency,” in
9th ACM International Conference on Computing Frontiers (CF’12),
2012, pp. 143–152.

[26] D. J. Sorin, M. Plakal, A. E. Condon, M. D. Hill, M. M. K. Martin, and
D. A. Wood, “Specifying and verifying a broadcast and a multicast
snooping cache coherence protocol,” IEEE Transactions on Parallel
and Distributed Systems, vol. 13, no. 6, pp. 556–578, Jun. 2002.

[27] “Mosaic Protocol Specification.” [Online]. Available:
http://www.atc.unican.es/galerna/mosaic.

[28] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA substrate for flexible CMP cache sharing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 8, pp. 1028–1040,
2007.

[29] N. E. Jerger, L. S. Peh, and M. Lipasti, “Virtual circuit tree
multicasting: A case for on-chip hardware multicast support,” in 35th
International Symposium on Computer Architecture (ISCA’08), 2008,
pp. 229–240.

[30] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. D.
Hill, D. A. Wood, and D. J. Sorin, “Simulating a $2M Commercial
Server on a $2K PC,” Computer, vol. 36, no. 2, pp. 50–57, Feb. 2003.

[31] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementation of NAS
Parallel Benchmarks and its Performance,” NAS Technical Report
NAS-99-011, NASA Ames Research Center, Moffett Field, CA, 1999.

[32] SPEC Standard Performance Evaluation Corporation, “SPEC 2006.”
[Online]. Available: http://www.spec.org.

[33] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset,” Computer Architecture News, 2005.

[34] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0,” in 40th IEEE/ACM International Symposium on
Microarchitecture, 2007, pp. 3–14.

[35] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip
Modeling,” 6th IEEE/ACM International Symposium on Networks-on-
Chip, pp. 201–210, 2012.

[36] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” in 44th IEEE/ACM
International Symposium on Microarchitecture, 2011, pp. 454–464.

288

