3,613 research outputs found

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Flight testing Time and Energy Managed Operations (TEMO)

    Get PDF
    The expected growth in air traffic combined with an increased public concern for the environment, have forced legislators to rethink the current air traffic system design. The current air traffic system operates at its capacity limits and is expected to lead to increased delays if traffic levels grow even further. Both in the United States and Europe, research projects have been initiated to develop the future Air Transportation System (ATS) to address capacity, and environmental, safety and economic issues. To address the environmental issues during descent and approach, a novel Continuous Descent Operations (CDO) concept, named Time and Energy Managed Operations (TEMO), has been developed co-sponsored by the Clean Sky Joint Undertaking. It uses energy principles to reduce fuel burn, gaseous emissions and noise nuisance whilst maintaining runway capacity. Different from other CDO concepts, TEMO optimizes the descent by using energy management to achieve a continuous engine-idle descent, while satisfying time constraints on both the Initial Approach Fix (IAF) and the runway threshold. As such, TEMO uses timemetering at two control points to facilitate flow management and arrival spacing. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management and is aimed at providing significant environmental benefits in the arrival phase without negatively affecting throughput, even in high density and peak-hour operations. In particular, TEMO addresses SESAR operational improvement (OI) TS-103: Controlled Time of Arrival (CTA) through use of datalink [1]. TEMO has been validated starting from initial performance batch studies at Technology Readiness Level (TRL) 3, up to Human-in-the-Loop studies in realistic environments using a moving base flight simulator at TRL 5 ([2]-[6]). In this paper the definition, preparation, performance and analysis of a flight test experiment is described with the objective to demonstrate the ability of the TEMO algorithm to provide accurate and safe aircraft guidance toward the Initial Approach Fix (IAF), and further down to the Stabilization Point (1000 ft AGL), to demonstrate the ability of the TEMO algorithm to meet absolute time requirements at IAF and/or runway threshold and to evaluate the performance of the system under test (e.g. fuel usage).Peer ReviewedPostprint (published version

    Zero/zero rotorcraft certification issues. Volume 1: Executive summary

    Get PDF
    This report analyzes the Zero/Zero Rotorcraft Certification Issues from the perspectives of manufacturers, operators, researchers and the FAA. The basic premise behind this analysis is the zero/zero, or at least extremely low visibility, rotorcraft operations are feasible today from both a technological and an operational standpoint. The questions and issues that need to be resolved are: What certification requirements do we need to ensure safety. Can we develop procedures which capitalize on the performance and maneuvering capabilities unique to rotorcraft. Will exptremely low visibility operations be economically feasible. This is Volume 1 of three. It provides an overview of the Certification Issues Forum held in Phoenix, Arizona in August of 1987. It presents a consensus of 48 experts from government, manufacturer, and research communities on 50 specific Certification Issues. The topics of Operational Requirements, Procedures, Airworthiness, and Engineering Capabilities are discussed

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure

    The Application of Ranging Techniques to Navigation and Traffic Control

    Get PDF
    During the last decade a variety of ground- and airbased radio aids have been implemented in efforts to solve major military problems in navigation and guidance, and command, control and communications. Because of significant advances in space technology and avionics, satellite-based systems to provide position-fixing data by means of ranging and range-differencing techniques, and to provide communications capability, have been shown to be feasible and attractive, and to have unique technical and operational advantages. World-wide coverage, essentially instantaneously availability, and threedimensional position-fixing accuracy of a few tens of feet seem feasible. In the civil area, demand for improved communications over the oceans, and for improved air traffic control over both the U.S. and the oceans, may be met by space-based systems. Indeed, the Office of Telecommunications Policy has recently called for a satellite telecommunications service for over-ocean aeronautical operations. A developing view supports the use of satellite-ranging techniques and satellite communications to provide for certain fundamental air traffic control functions over the U. S. in the period through the 1990s. From a satellite and data processing point of view, it appears feasible to implement in the early 1980s a system which could provide surveillance data to the order of 100 feet in three dimensions; an emergency communications capability corresponding to the operational notion of intermittent positive control; data for accurate autonomous navigation and for terminal approach and blind landing. These capabilities would be available to aircraft to an extent depending on its investment in avionics. To accomplish the implied objectives requires the establishment of organized and systematic R&D programs, including a well conceived evaluation methodology

    Contingency Management Requirements Document: Preliminary Version. Revision F

    Get PDF
    This is the High Altitude, Long Endurance (HALE) Remotely Operated Aircraft (ROA) Contingency Management (CM) Functional Requirements document. This document applies to HALE ROA operating within the National Airspace System (NAS) limited at this time to enroute operations above 43,000 feet (defined as Step 1 of the Access 5 project, sponsored by the National Aeronautics and Space Administration). A contingency is an unforeseen event requiring a response. The unforeseen event may be an emergency, an incident, a deviation, or an observation. Contingency Management (CM) is the process of evaluating the event, deciding on the proper course of action (a plan), and successfully executing the plan

    System elements required to guarantee the reliability, availability and integrity of decision-making information in a complex airborne autonomous system

    Get PDF
    Current air traffic management systems are centred on piloted aircraft, in which all the main decisions are made by humans. In the world of autonomous vehicles, there will be a driving need for decisions to be made by the system rather than by humans due to the benefits of more automation such as reducing the likelihood of human error, handling more air traffic in national airspace safely, providing prior warnings of potential conflicts etc. The system will have to decide on courses of action that will have highly safety critical consequences. One way to ensure these decisions are robust is to guarantee that the information being used for the decision is valid and of very high integrity. [Continues.
    • …
    corecore