530,325 research outputs found

    Micro-to-macro: astrodynamics at extremes of lengths-scale

    Get PDF
    This paper investigates astrodynamics at extremes of length-scale, ranging from swarms of future `smart dust' devices to the capture and utilisation of small near Earth asteroids. At the smallest length-scales families of orbits are found which balance the energy gain from solar radiation pressure with energy dissipation due to air drag. This results in long orbit lifetimes for high area-to-mass ratio `smart dust' devices. High area-to-mass hybrid spacecraft, using both solar sail and electric propulsion, are then considered to enable `pole-sitter' orbits providing a polar-stationary vantage point for Earth observation. These spacecraft are also considered to enable displaced geostationary orbits. Finally, the potential material resource available from captured near Earth asteroids is considered which can underpin future large-scale space engineering ventures. The use of such material for geo-engineering is investigated using a cloud of unprocessed dust in the vicinity of the Earth-Sun L1L_1 point to fractionally reduce solar insolation

    Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network

    Get PDF
    Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-division-multiplexed (WDM) and hybrid WDM/optical time-division-multiplexed networks

    Solar powered hybrid sensor module program

    Get PDF
    Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed

    Neutrino Mass, Leptogenesis, and Dark Matter from The Dark Sector with U(1)DU(1)_{D}

    Full text link
    I suggest a new extension of the SM by introducing a dark sector which has several new particles and a local U(1)DU(1)_{D} symmetry. The dark particles bring about the new and interesting physics beyond the SM. The model can generate the tiny neutrino mass by a hybrid see-saw mechanism, achieve the leptogenesis at the TeV scale, and account for the cold dark matter. All of the three things collectively arise from the dark sector. In particular, it is very feasible to test the model predictions and probe the dark sector in near future experiments.Comment: 18 pages, 4 figures, to be published by JHEP. arXiv admin note: text overlap with arXiv:1706.0723

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    Electron density retrieval from truncated Radio Occultation GNSS data

    Get PDF
    This paper summarizes the definition and validation of two complementary new strategies, to invert incomplete Global Navigation Satellite System Radio-Occultation (RO) ionospheric measurements, such as the ones to be provided by the future EUMETSAT Polar System Second Generation. It will provide RO measurements with impact parameter much below the Low Earth Orbiters' height (817 km): from 500 km down approximately. The first presented method to invert truncated RO data is denoted as Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data, based on simple First Principles, very precise, and well suited for postprocessing. And the second method is denoted as Simple Estimation of Electron density profiles from topside Incomplete RO data, is less precise, but yields very fast estimations, suitable for Near Real-Time determination. Both techniques will be described and assessed with a set of 546 representative COSMIC/FORMOSAT-3 ROs, with relative errors of 7% and 11% for Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data and Simple Estimation of Electron density profiles from topside Incomplete RO data, respectively, with 20 min and 15 s, respectively, of computational time per occultation in our Intel I7 PC.Peer ReviewedPostprint (published version
    • 

    corecore