42 research outputs found

    Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

    Get PDF
    Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations

    On the N Non-Attacking Queens Problem

    Full text link

    The Explicit Identities for Spectral Norms of Circulant-Type Matrices Involving Binomial Coefficients and Harmonic Numbers

    Get PDF
    The explicit formulae of spectral norms for circulant-type matrices are investigated; the matrices are circulant matrix, skew-circulant matrix, and g-circulant matrix, respectively. The entries are products of binomial coefficients with harmonic numbers. Explicit identities for these spectral norms are obtained. Employing these approaches, some numerical tests are listed to verify the results

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication

    A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images

    Full text link
    Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 subjects performing linguistically motivated speech tasks, alongside the corresponding first-ever public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each subject.Comment: 27 pages, 6 figures, 5 tables, submitted to Nature Scientific Dat

    Frame-based multiple-description video coding with extended orthogonal filter banks

    Get PDF
    We propose a frame-based multiple-description video coder. The analysis filter bank is the extension of an orthogonal filter bank which computes the spatial polyphase components of the original video frames. The output of the filter bank is a set of video sequences which can be compressed with a standard coder. The filter bank design is carried out by taking into account two important requirements for video coding, namely, the fact that the dual synthesis filter bank is FIR, and that loss recovery does not enhance the quantization error. We give explicit results about the required properties of the redundant channel filter and the reconstruction error bounds in case of packet errors. We show that the proposed scheme has good error robustness to losses and good performance, both in terms of objective and visual quality, when compared to single description and other multiple description video coders based on spatial subsampling. PSNR gains of 5 dB or more are typical for packet loss probability as low as 5%
    corecore