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The explicit formulae of spectral norms for circulant-typematrices are investigated; thematrices are circulantmatrix, skew-circulant
matrix, and 𝑔-circulant matrix, respectively. The entries are products of binomial coefficients with harmonic numbers. Explicit
identities for these spectral norms are obtained. Employing these approaches, some numerical tests are listed to verify the results.

1. Introduction

The classical hypergeometric summation theorems are ex-
ploited to derive several striking identities on harmonic
numbers [1]. In numerical analysis, circulant matrices
(named “premultipliers” in numerical methods) are impor-
tant because they are diagonalized by a discrete Fourier
transform, and hence linear equations that contain them
may be quickly solved using a fast Fourier transform. Fur-
thermore, circulant, skew-circulant, and 𝑔-circulant matri-
ces play important roles in various applications, such as
image processing, coding, and engineering model. For more
details, please refer to [2–13] and the references therein.
The skew-circulant matrices were collected to construct
preconditioners for LMF-based ODE codes; Hermitian and
skew-Hermitian Toeplitz systems were considered in [14–
17]; Lyness employed a skew-circulant matrix to construct 𝑠-
dimensional lattice rules in [18]. Recently, there are lots of
research on the spectral distribution and norms of circulant-
type matrices. In [19], the authors pointed out the processes
based on the eigenvalue of circulant-type matrices and
the convergence to a Poisson random measure in vague
topology. There were discussions about the convergence in
probability and distribution of the spectral normof circulant-
type matrices in [20]. The authors in [21] listed the limiting
spectral distribution for a class of circulant-type matrices
with heavy tailed input sequence. Ngondiep et al. showed that

the singular values of 𝑔-circulants in [22]. Solak established
the lower and upper bounds for the spectral norms of cir-
culant matrices with classical Fibonacci and Lucas numbers
entries in [23]. İpek investigated an improved estimation for
spectral norms in [24].

In this paper, we derive some explicit identities of spectral
norms for some circulant-type matrices with product of
binomial coefficients with harmonic numbers.

The outline of the paper is as follows. In Section 2, the
definitions and preliminary results are listed. In Section 3,
the spectral norms of some circulant matrices are studied. In
Section 4, the formulae of spectral norms for skew-circulant
matrices are established. Section 5 is devoted to investigate
the explicit formulae for 𝑔-circulant matrices. The numerical
tests are given in Section 6.

2. Preliminaries

The binomial coefficients are defined by (
𝑛

𝑘
) for all natural

numbers 𝑘 at once by

(1 + 𝑋)
𝑛

= ∑

𝑘≥0

(
𝑛

𝑘
) 𝑋
𝑘

. (1)

Note that (
𝑛

𝑘
) is the 𝑘th binomial coefficient of 𝑛. It is clear

that (
𝑛

0
) = 1, (

𝑛

𝑛
) = 1, and (

𝑛

𝑘
) = 0, for 𝑘 > 𝑛.
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The generalized harmonic numbers are defined to be
partial sums of the harmonic series [1]:

𝐻
0

(𝑥) = 0, 𝐻
𝑖
(𝑥) =

𝑖

∑

𝑘=0

1

𝑥 + 𝑘
(𝑖 = 1, 2, . . .) . (2)

For 𝑥 = 0 in particular, they reduce to classical harmonic
numbers:

𝐻
0

= 0, 𝐻
𝑖
= 1 +

1

2
+

1

3
+ ⋅ ⋅ ⋅ +

1

𝑖
(𝑖 = 1, 2, . . .) .

(3)

We recall the following harmonic number identities [1]:
𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)

= 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) ,

𝑛

∑

𝑖=0

(
𝑛

𝑖
) (

2𝑛

𝑖
) (

3𝑛 + 𝑖

𝑖
) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
)

= (
3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) .

(4)

Definition 1 (see [6, 8]). A circulantmatrix is an 𝑛×𝑛 complex
matrix with the following form:

𝐴
𝑐

= (

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑎
𝑛−1

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑎
𝑛−2

𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−3

...
... d

...
𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
0

)

𝑛×𝑛

. (5)

The first row of 𝐴
𝑐
is (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by one
position.

Equivalently, a circulant matrix can be described with
polynomial as

𝐴
𝑐

= 𝑓 (𝜂
𝑐
) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜂
𝑖

𝑐
, (6)

where

𝜂
𝑐

= (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (7)

Obviously, 𝜂
𝑛

𝑐
= 𝐼
𝑛
.

Now, we discuss the eigenvalues of 𝐴
𝑐
. We declare that

the eigenvalues of 𝜂
𝑐
are the corresponding eigenvalues of 𝐴

𝑐

with the function 𝑓 in (6), which is

𝜆 (𝐴
𝑐
) = 𝑓 (𝜆 (𝜂

𝑐
)) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜆(𝜂
𝑐
)
𝑖

. (8)

Whereas 𝜆
𝑗
(𝜂
𝑐
) = 𝜔

𝑗, (𝑗 = 0, 1, . . . , 𝑛 − 1), then 𝜆
𝑗
(𝐴
𝑐
)

can be calculated by

𝜆
𝑗
(𝐴
𝑐
) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑗

)
𝑖

, (9)

where 𝜔 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛).
Similarly, we recall a skew-circulant matrix.

Definition 2 (see [6, 8]). A skew-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴 sc = (

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

−𝑎
𝑛−1

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−2

−𝑎
𝑛−2

−𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−3

...
... d

...
−𝑎
1

−𝑎
2

⋅ ⋅ ⋅ 𝑎
0

)

𝑛×𝑛

. (10)

Moreover, a skew-circulant matrix can be described with
polynomial as

𝐴 sc = 𝑓 (𝜂sc) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜂
𝑖

sc, (11)

where

𝜂sc = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 1

−1 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (12)

Obviously, 𝜂
𝑛

sc = −𝐼
𝑛
.

Thus we have to calculate the eigenvalues of 𝐴 sc. For the
same reason, we obtain that

𝜆 (𝐴 sc) = 𝑓 (𝜆 (𝜂sc)) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜆
𝑖

(𝜂sc) . (13)

Whereas 𝜆
𝑗
(𝜂sc) = 𝜔

𝑗

𝛼, (𝑗 = 0, 1, . . . , 𝑛 − 1) 𝜆
𝑗
(𝐴 sc) can

be computed by

𝜆
𝑗
(𝐴 sc) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑗

𝛼)
𝑖

, (14)

where 𝜔 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛), 𝛼 = cos(𝜋/𝑛) + 𝑖 sin(𝜋/𝑛).

Definition 3 (see [21, 25]). A 𝑔-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴
𝑔

= (

𝑎
0

𝑎
1

. . . 𝑎
𝑛−1

𝑎
𝑛−𝑔

𝑎
𝑛−𝑔+1

. . . 𝑎
𝑛−𝑔−1

𝑎
𝑛−2𝑔

𝑎
𝑛−2𝑔+1

. . . 𝑎
𝑛−2𝑔−1

...
... d

...
𝑎
𝑔

𝑎
𝑔+1

. . . 𝑎
𝑔−1

)

𝑛×𝑛

, (15)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.
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The first row of 𝐴
𝑔
is (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by 𝑔

positions (equivalently, 𝑔 mod 𝑛 positions). Note that 𝑔 = 1

or 𝑔 = 𝑛 + 1 yields the standard circulant matrix. If 𝑔 = 𝑛 − 1,
then we obtain the so-called reverse circulant matrix [21].

Definition 4 (see [26]). The spectral norm ‖ ⋅ ‖
2
of a matrix

𝐴 with complex entries is the square root of the largest
eigenvalue of the positive semidefinite matrix 𝐴

∗

𝐴:

‖𝐴‖
2

= √𝜆max (𝐴∗𝐴), (16)

where 𝐴
∗ denotes the conjugate transpose of 𝐴. Therefore if

𝐴 is an 𝑛 × 𝑛 real symmetric matrix or 𝐴 is a normal matrix,
then

‖𝐴‖
2

= max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 , (17)

where 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
are the eigenvalues of 𝐴.

3. Spectral Norms of Some Circulant Matrices

Now, we will analyse spectral norms of some given circulant
matrices, whose entries are binomial coefficients combined
with harmonic numbers.

Our main results for those matrices are stated as follows.

Theorem 5. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
1
is as in

(5), and the first row of 𝐵
1
is

((
𝑛

0
)

2

(
2𝑛

0
) (𝐻
2𝑛

− 𝐻
0
) ,

(
𝑛

1
)

2

(
2𝑛 + 1

1
) (𝐻
2𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
)

2

(
2𝑛 + 𝑛

𝑛
) (𝐻
2𝑛+𝑛

− 𝐻
𝑛
)) ,

(18)

where 𝑎
𝑖
= (
𝑛

𝑖
)
2

( 2𝑛+𝑖
𝑖

) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
). Then one has

󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2 = 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (19)

Proof. Since circulant matrix 𝐵
1

is normal, employing
Definition 4, we claim that the spectral norm of 𝐵

1
is equal to

its spectral radius. Furthermore, applying the irreducible and
entrywise nonnegative properties, we claim that ‖𝐵

1
‖
2
(i.e.,

its spectral norm) is equal to its Perron value. We select an
(𝑛 + 1)-dimensional column vector V = (1, 1, . . . , 1)

𝑇; then

𝐵
1
V = (

𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)) V. (20)

Obviously,∑𝑛
𝑖=0

(
𝑛

𝑖
)
2

( 2𝑛+𝑖
𝑖

) (𝐻
2𝑛+𝑖

−𝐻
𝑖
) is an eigenvalue of 𝐵

1

associated with V, which is necessarily the Perron value of 𝐵
1
.

Employing (4), we obtain

󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2 = 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (21)

This completes the proof.

Hence, employing the same approaches, we get the
following corollary.

Corollary 6. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
2
be as in

(5), and the first row of 𝐵
2
is

((
𝑛

0
) (

2𝑛

0
) (

3𝑛

0
) (𝐻
3𝑛

− 𝐻
0
) ,

(
𝑛

1
) (

2𝑛

1
) (

3𝑛 + 1

1
) (𝐻
3𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
) (

2𝑛

𝑛
) (

4𝑛

𝑛
) (𝐻
4𝑛

− 𝐻
𝑛
)) ,

(22)

where 𝑎
𝑖
= (
𝑛

𝑖
) ( 2𝑛
𝑖

) ( 3𝑛+𝑖
𝑖

) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
). Then

󵄩󵄩󵄩󵄩𝐵
2

󵄩󵄩󵄩󵄩2 = (
3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) . (23)

Now, we investigate some even-order alternative as fol-
lows, where 𝑚 is odd (i.e., 𝑚 + 1 is even).

Theorem 7. Let (𝑚 + 1) × (𝑚 + 1)-circulant matrix 𝐵
3
be as in

(5), and the first row of 𝐵
3
is

((
𝑚

0
)

2

(
2𝑚

0
) (𝐻
2𝑚

− 𝐻
0
) ,

− (
𝑚

1
)

2

(
2𝑚 + 1

1
) (𝐻
2𝑚+1

− 𝐻
1
) , . . . ,

−(
𝑚

𝑚
)

2

(
2𝑚 + 𝑚

𝑚
) (𝐻
2𝑚+𝑚

− 𝐻
𝑚

)) ,

(24)

where 𝑎
𝑖

= (−1)
𝑖

(
𝑚

𝑖
)
2

( 2𝑚+𝑖
𝑖

) (𝐻
2𝑚+𝑖

− 𝐻
𝑖
). Then there holds

the following identity:

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 = 2(
2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) . (25)

Proof. Noticing (9) and (17), it is clear that the spectral norm
of 𝐵
3
can be calculated by

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 = max
0≤𝑡≤𝑚

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵3)
󵄨󵄨󵄨󵄨 = max
0≤𝑡≤𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑡

)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
0≤𝑡≤𝑚

{

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑡

)
𝑖󵄨󵄨󵄨󵄨󵄨󵄨
} =

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ,

(26)

where 𝑎
𝑖

= (−1)
𝑖

(
𝑚

𝑖
)
2

( 2𝑚+𝑖
𝑖

) (𝐻
2𝑚+𝑖

− 𝐻
𝑖
), and we employed

that all circulant matrices are normal.
Note that, if 𝑚 is odd, then 𝑚 + 1 is even, and 𝜆

𝑡0
(𝜂
𝑐
) =

𝜔
𝑡0 = −1 is an eigenvalue of 𝜂

𝑐
, so

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 =

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 . (27)

Combining (4) and (27) yields

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 = 2(
2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) . (28)

This completes the proof.
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Employing the same approaches, we get the following
corollary.

Corollary 8. Let (𝑚 + 1) × (𝑚 + 1)-circulant matrix 𝐵
4
be as

in (5), and the first row of 𝐵
4
is

((
𝑚

0
) (

2𝑚

0
) (

3𝑚

0
) (𝐻
3𝑚

− 𝐻
0
) ,

− (
𝑚

1
) (

2𝑚

1
) (

3𝑚 + 1

1
) (𝐻
3𝑚+1

− 𝐻
1
) , . . . ,

(
𝑚

𝑚
) (

2𝑚

𝑚
) (

4𝑚

𝑚
) (𝐻
4𝑚

− 𝐻
𝑚

)) ,

(29)

where 𝑎
𝑖

= (−1)
𝑖

(
𝑚

𝑖
) ( 2𝑚
𝑖

) ( 3𝑚+𝑖
𝑖

) (𝐻
3𝑚+𝑖

− 𝐻
𝑖
). Then one has

the following identity:

󵄩󵄩󵄩󵄩𝐵
4

󵄩󵄩󵄩󵄩2 = (
3𝑚

𝑚
)

2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

) . (30)

Similarly, we set 𝐵
3

= −𝐵
3
, 𝐵
4

= −𝐵
4
.

Corollary 9. Let𝐵
3
,𝐵
4
be as above, respectively, and𝑚 is odd.

Then

󵄩󵄩󵄩󵄩󵄩
𝐵
3

󵄩󵄩󵄩󵄩󵄩2
= 2(

2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) ,

󵄩󵄩󵄩󵄩󵄩
𝐵
4

󵄩󵄩󵄩󵄩󵄩2
= (

3𝑚

𝑚
)

2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

) .

(31)

4. Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined as
follows, where 𝑠 is even.

Theorem 10. Let (𝑠 + 1) × (𝑠 + 1)-circulant matrix 𝐵
5
be as in

(10), and the first row of 𝐵
5
is

((
𝑠

0
)

2

(
2𝑠

0
) (𝐻
2𝑠

− 𝐻
0
) ,

−(
𝑠

1
)

2

(
2𝑠 + 1

1
) (𝐻
2𝑠+1

− 𝐻
1
) , . . . ,

(
𝑠

𝑠
)

2

(
2𝑠 + 𝑠

𝑠
) (𝐻
2𝑠+𝑠

− 𝐻
𝑠
)) ,

(32)

where 𝑎
𝑖
= (−1)

𝑖

(
𝑠

𝑖
)
2

( 2𝑠+𝑖
𝑖

) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
). Then one obtains

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 = 2(
2𝑠

𝑠
)

2

(𝐻
2𝑠

− 𝐻
𝑠
) . (33)

Proof. We employ (14) and (17) to calculate the spectral norm
of 𝐵
5
as follows, for all 𝑡 = 0, 1, . . . , 𝑠:

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵5)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑡

𝛼)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑠

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑡

𝛼)
𝑖󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑠

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 =

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) ,

(34)

where 𝑎
𝑖
= (−1)

𝑖

(
𝑠

𝑖
)
2

( 2𝑠+𝑖
𝑖

) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
).

Since the skew-circulantmatrix is normal, we deduce that
󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 = max
0≤𝑡≤𝑠

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵5)
󵄨󵄨󵄨󵄨 . (35)

If 𝑠 is even, then 𝑠 + 1 is odd. We declare that 𝜆sc = −1

is an eigenvalue of 𝜂sc; then we calculate the corresponding
eigenvalue of 𝐵

5
as follows:

𝜆
𝑡̂
(𝐵
5
) =

𝑠

∑

𝑖=0

𝑎
𝑖
𝜆
𝑖

sc =

𝑠

∑

𝑖=0

𝑎
𝑖
(−1)
𝑖

=

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) ,

(36)

where we had employed (14).
Noticing (34), we claim that 𝜆

𝑡̂
(𝐵
5
) is the maximum of

|𝜆
𝑡
(𝐵
5
)|, which means

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 =

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) . (37)

Thus, from (4) we obtain

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 = 2(
2𝑠

𝑠
)

2

(𝐻
2𝑠

− 𝐻
𝑠
) . (38)

This completes the proof.

Similarly, we can calculate the identity for 𝐵
6
.

Corollary 11. Let (𝑠 + 1) × (𝑠 + 1)-circulant matrix 𝐵
6
be as in

(10), and the first row of 𝐵
6
is

((
𝑠

0
) (

2𝑠

0
) (

3𝑠

0
) (𝐻
3𝑠

− 𝐻
0
) ,

− (
𝑠

1
) (

2𝑠

1
) (

3𝑠 + 1

1
) (𝐻
3𝑠+1

− 𝐻
1
) , . . . ,

(
𝑠

𝑠
) (

2𝑠

𝑠
) (

3𝑠 + 𝑠

𝑠
) (𝐻
3𝑠+𝑠

− 𝐻
𝑠
)) ,

(39)

where 𝑎
𝑖
= (−1)

𝑖

(
𝑠

𝑖
) ( 2𝑠
𝑖

) ( 3𝑠+𝑖
𝑖

) (𝐻
3𝑠+𝑖

− 𝐻
𝑖
). Then there holds

󵄩󵄩󵄩󵄩𝐵
6

󵄩󵄩󵄩󵄩2 = (
3𝑠

𝑠
)

2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
) . (40)
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Corollary 12. Let𝐵
5

= −𝐵
5
and𝐵

6
= −𝐵
6
, and 𝑠 is even.Then

one has the identities for spectral norm

󵄩󵄩󵄩󵄩󵄩
𝐵
5

󵄩󵄩󵄩󵄩󵄩2
= 2(

2𝑠

𝑠
)

2

(2𝐻
2𝑠

− 𝐻
𝑠
) ,

󵄩󵄩󵄩󵄩󵄩
𝐵
6

󵄩󵄩󵄩󵄩󵄩2
= (

3𝑠

𝑠
)

2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
) .

(41)

5. Spectral Norms of 𝑔-Circulant Matrices

Inspired by the above propositions, we analyse spectral norms
of some given 𝑔-circulant matrices in this section.

Lemma 13 (see [25]). The (𝑛+1)×(𝑛+1)matrix𝑄
𝑔
is unitary

if and only if

(𝑛 + 1, 𝑔) = 1, (42)

where 𝑄
𝑔
is a 𝑔-circulant matrix with the first row 𝑒

∗

= [1,

0, . . . , 0].

Lemma 14 (see [25]). 𝐴 is a 𝑔-circulant matrix with the first
row [𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛
] if and only if

𝐴 = 𝑄
𝑔
𝐶, (43)

where

𝐶 = circ (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) . (44)

In the following part, we set (𝑛 + 1, 𝑔) = 1.

Theorem 15. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
7
be as in

(15), and the first row of 𝐵
7
is

((
𝑛

0
)

2

(
2𝑛

0
) (𝐻
2𝑛

− 𝐻
0
) ,

(
𝑛

1
)

2

(
2𝑛 + 1

1
) (𝐻
2𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
)

2

(
2𝑛 + 𝑛

𝑛
) (𝐻
2𝑛+𝑛

− 𝐻
𝑛
)) ,

(45)

where 𝑎
𝑖
= (
𝑛

𝑖
)
2

( 2𝑛+𝑖
𝑖

) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
). Then

󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2 = 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (46)

Proof. With the help of Lemmas 13 and 14, we know that
the 𝑔-circulant matrix 𝐵

7
is normal; then we claim that the

spectral norm of 𝐵
7
is equal to its spectral radius. Further-

more, applying the irreducible and entrywise nonnegative
properties, we claim that ‖𝐵

7
‖
2
(i.e., its spectral norm) is equal

to its Perron value. We select a (𝑛 + 1)-dimensional column
vector V = (1, 1, . . . , 1)

𝑇; then

𝐵
7
V = (

𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)) V. (47)

Obviously,∑𝑛
𝑖=0

(
𝑛

𝑖
)
2

( 2𝑛+𝑖
𝑖

) (𝐻
2𝑛+𝑖

−𝐻
𝑖
) is an eigenvalue of 𝐵

7

associated with V, which is necessarily the Perron value of 𝐵
7
.

Employing (4), we obtain

󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2 = 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (48)

This completes the proof.

Corollary 16. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
8
be as

in (15), and the first row of 𝐵
8
is

((
𝑛

0
) (

2𝑛

0
) (

3𝑛

0
) (𝐻
3𝑛

− 𝐻
0
) ,

(
𝑛

1
) (

2𝑛

1
) (

3𝑛 + 1

1
) (𝐻
3𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
) (

2𝑛

𝑛
) (

4𝑛

𝑛
) (𝐻
4𝑛

− 𝐻
𝑛
)) ,

(49)

where 𝑎
𝑖
= (
𝑛

𝑖
) ( 2𝑛
𝑖

) ( 3𝑛+𝑖
𝑖

) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
). Then one obtains

󵄩󵄩󵄩󵄩𝐵
8

󵄩󵄩󵄩󵄩2 = (
3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) . (50)

6. Numerical Examples

Example 1. In this example, we give the numerical results for
𝐵
1
and 𝐵

2
.

Comparing the data in Table 1, we declare that the
identities of spectral norms for 𝐵

𝑖
(𝑖 = 1, 2) hold.

Example 2. In this example, we list the numerical results for
𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 3, 4).
With the help of data in Table 2, it is clear that the

identities of spectral norms for 𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 3, 4) hold.

Example 3. In this example, we reveal the numerical results
for alternative skew-circulant matrices 𝐵

𝑖
, 𝐵
𝑖

(𝑖 = 5, 6).
Combining the data in Table 3, we deduce that the

identities of spectral norms for 𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 5, 6) hold.

Example 4. In this example, we show numerical results for 𝐵
7

and 𝐵
8
.

Considering the data in Table 4, we deduce that the
identities of spectral norms for 𝐵

𝑖
(𝑖 = 7, 8) hold.

The above results demonstrate that the identities of
spectral norms for the given matrices hold.

7. Conclusion

This paper had discussed the explicit formulae for identical
estimations of spectral norms for circulant, skew-circulant
and 𝑔-circulant matrices, whose entries are binomial coef-
ficients combined with harmonic numbers. Furthermore,
it is easy to take other entries to obtain more interesting
identities, and the same approaches can be used to verify
those identities. Furthermore, explicit formulas for both
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Table 1: Spectral norms of 𝐵
𝑖
(𝑖 = 1, 2), 𝐶

1,𝑛
= 2(
2𝑛

𝑛
)
2

(𝐻
2𝑛

− 𝐻
𝑛
), and 𝐶

2,𝑛
= (
3𝑛

𝑛
)
2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
).

𝑛 0 1 2 3 4 5 6
󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2 0 4 42 4.93𝑒 + 2 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6
󵄩󵄩󵄩󵄩𝐵
2

󵄩󵄩󵄩󵄩2 0 1.05𝑒 + 1 2.96𝑒 + 2 9.69𝑒 + 3 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8

𝐶
1,𝑛

0 4 42 4.93𝑒 + 2 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6

𝐶
2,𝑛

0 1.05𝑒 + 1 2.96𝑒 + 2 9.69𝑒 + 3 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8

Table 2: Spectral norms of 𝐵
𝑖
, 𝐵
𝑖
(𝑖 = 3, 4), 𝐶

1,𝑚
= 2(
2𝑚

𝑚
)
2

(𝐻
2𝑚

− 𝐻
𝑚

), and 𝐶
2,𝑚

= (
3𝑚

𝑚
)
2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

).

𝑚 1 3 5 7 9 11
󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11
󵄩󵄩󵄩󵄩𝐵
4

󵄩󵄩󵄩󵄩2 10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16
󵄩󵄩󵄩󵄩󵄩
𝐵
3

󵄩󵄩󵄩󵄩󵄩2
4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11

󵄩󵄩󵄩󵄩󵄩
𝐵
4

󵄩󵄩󵄩󵄩󵄩2
10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16

𝐶
1,𝑚

4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11

𝐶
2,𝑚

10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16

Table 3: Spectral norms of 𝐵
𝑖
, 𝐵
𝑖
(𝑖 = 5, 6), 𝐶

1,𝑠
= 2(
2𝑠

𝑠
)
2

(𝐻
2𝑠

− 𝐻
𝑠
), and 𝐶

2,𝑠
= (
3𝑠

𝑠
)
2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
).

𝑠 0 2 4 6 8 10
󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10
󵄩󵄩󵄩󵄩𝐵
6

󵄩󵄩󵄩󵄩2 0 2.96𝑒 + 2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15
󵄩󵄩󵄩󵄩󵄩
𝐵
5

󵄩󵄩󵄩󵄩󵄩2
0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10

󵄩󵄩󵄩󵄩󵄩
𝐵
6

󵄩󵄩󵄩󵄩󵄩2
0 2.96e+2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15

𝐶
1,𝑠

0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10

𝐶
2,𝑠

0 2.96𝑒 + 2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15

Table 4: Spectral norms of 𝐵
𝑖
(𝑖 = 7, 8), 𝐶

1,𝑛
= 2(
2𝑛

𝑛
)
2

(𝐻
2𝑛

− 𝐻
𝑛
), and 𝐶

2,𝑛
= (
3𝑛

𝑛
)
2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
).

𝑛 + 1 5 6 7
𝑔 2 3 4 5 2 3 4 5 6
󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2 6.22𝑒 + 3 6.22𝑒 + 3 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6
󵄩󵄩󵄩󵄩𝐵
8

󵄩󵄩󵄩󵄩2 3.44𝑒 + 5 3.44𝑒 + 5 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8

𝐶
1,𝑛

6.22𝑒 + 3 6.22𝑒 + 3 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6

𝐶
2,𝑛

3.44𝑒 + 5 3.44𝑒 + 5 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8

norms ‖𝐴‖ and ‖𝐴
−1

‖ help us to estimate the so-called
condition number. It is an interesting problem to investigate
the properties of 𝐵

𝑖
(𝑖 = 1, 2, . . . , 8), such as the explicit

formulations for determinants and inverses, by just using the
entries in the first row.
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