31 research outputs found

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    The Power of Super-logarithmic Number of Players

    Get PDF
    In the `Number-on-Forehead\u27 (NOF) model of multiparty communication, the input is a k times m boolean matrix A (where k is the number of players) and Player i sees all bits except those in the i-th row, and the players communicate by broadcast in order to evaluate a specified function f at A. We discover new computational power when k exceeds log m. We give a protocol with communication cost poly-logarithmic in m, for block composed functions with limited block width. These are functions of the form f o g where f is a symmetric b-variate function, and g is a (kr)-variate function and (f o g)(A) is defined, for a k times (br) matrix to be f(g(A-1),...,g(A-b)) where A-i is the i-th (k times r) block of A. Our protocol works provided that k > 1+ ln b + (2 to the power of r). Ada et al. (ICALP\u272012) previously obtained simultaneous and deterministic efficient protocols for composed functions of block-width one. The new protocol is the first to work for block composed functions with block-width greather than one. Moreover, it is simultaneous, with vanishingly small error probability, if public coin randomness is allowed. The deterministic and zero-error version barely uses interaction

    Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness

    Get PDF
    We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Omega(n/4^k). This gives the first lower bound that is linear in n, nearly matching Grolmusz\u27s upper bound of O(log^2(n) + k^2n/2^k). We also simplify the proof of Sherstov\u27s Omega(sqrt(n)/(k2^k)) lower bound for the randomized communication complexity of set disjointness

    Semantic Versus Syntactic Cutting Planes

    Get PDF
    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of [22] applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for which any refutation in syntactic cutting planes requires exponential length, while there is a polynomial length refutation in semantic cutting planes. In other words, syntactic cutting planes does not p-simulate semantic cutting planes. We also give two incompatible integer inequalities which require exponential length refutation in syntactic cutting planes. Finally, we pose the following problem, which arises in connection with semantic inference of arity larger than two: can every multivariate non-decreasing real function be expressed as a composition of non-decreasing real functions in two variables

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]
    corecore