21 research outputs found

    Re-Identification of Zebrafish using Metric Learning

    Get PDF

    Colour morphological sieves for scale-space image processing

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Micro-, Meso- and Macro-Dynamics of the Brain

    Get PDF
    Neurosciences, Neurology, Psychiatr

    Assessing Variability of EEG and ECG/HRV Time Series Signals Using a Variety of Non-Linear Methods

    Get PDF
    Time series signals, such as Electroencephalogram (EEG) and Electrocardiogram (ECG) represent the complex dynamic behaviours of biological systems. The analysis of these signals using variety of nonlinear methods is essential for understanding variability within EEG and ECG, which potentially could help unveiling hidden patterns related to underlying physiological mechanisms. EEG is a time varying signal, and electrodes for recording EEG at different positions on the scalp give different time varying signals. There might be correlation between these signals. It is important to know the correlation between EEG signals because it might tell whether or not brain activities from different areas are related. EEG and ECG might be related to each other because both of them are generated from one co-ordinately working body. Investigating this relationship is of interest because it may reveal information about the correlation between EEG and ECG signals. This thesis is about assessing variability of time series data, EEG and ECG, using variety of nonlinear measures. Although other research has looked into the correlation between EEGs using a limited number of electrodes and a limited number of combinations of electrode pairs, no research has investigated the correlation between EEG signals and distance between electrodes. Furthermore, no one has compared the correlation performance for participants with and without medical conditions. In my research, I have filled up these gaps by using a full range of electrodes and all possible combinations of electrode pairs analysed in Time Domain (TD). Cross-Correlation method is calculated on the processed EEG signals for different number unique electrode pairs from each datasets. In order to obtain the distance in centimetres (cm) between electrodes, a measuring tape was used. For most of our participants the head circumference range was 54-58cm, for which a medium-sized I have discovered that the correlation between EEG signals measured through electrodes is linearly dependent on the physical distance (straight-line) distance between them for datasets without medical condition, but not for datasets with medical conditions. Some research has investigated correlation between EEG and Heart Rate Variability (HRV) within limited brain areas and demonstrated the existence of correlation between EEG and HRV. But no research has indicated whether or not the correlation changes with brain area. Although Wavelet Transformations (WT) have been performed on time series data including EEG and HRV signals to extract certain features respectively by other research, so far correlation between WT signals of EEG and HRV has not been analysed. My research covers these gaps by conducting a thorough investigation of all electrodes on the human scalp in Frequency Domain (FD) as well as TD. For the reason of different sample rates of EEG and HRV, two different approaches (named as Method 1 and Method 2) are utilised to segment EEG signals and to calculate Pearson’s Correlation Coefficient for each of the EEG frequencies with each of the HRV frequencies in FD. I have demonstrated that EEG at the front area of the brain has a stronger correlation with HRV than that at the other area in a frequency domain. These findings are independent of both participants and brain hemispheres. Sample Entropy (SE) is used to predict complexity of time series data. Recent research has proposed new calculation methods for SE, aiming to improve the accuracy. To my knowledge, no one has attempted to reduce the computational time of SE calculation. I have developed a new calculation method for time series complexity which could improve computational time significantly in the context of calculating a correlation between EEG and HRV. The results have a parsimonious outcome of SE calculation by exploiting a new method of SE implementation. In addition, it is found that the electrical activity in the frontal lobe of the brain appears to be correlated with the HRV in a time domain. Time series analysis method has been utilised to study complex systems that appear ubiquitous in nature, but limited to certain dynamic systems (e.g. analysing variables affecting stock values). In this thesis, I have also investigated the nature of the dynamic system of HRV. I have disclosed that Embedding Dimension could unveil two variables that determined HRV

    Scientific Advances in STEM: From Professor to Students

    Get PDF
    This book collects the publications of the special Topic Scientific advances in STEM: from Professor to students. The aim is to contribute to the advancement of the Science and Engineering fields and their impact on the industrial sector, which requires a multidisciplinary approach. University generates and transmits knowledge to serve society. Social demands continuously evolve, mainly because of cultural, scientific, and technological development. Researchers must contextualize the subjects they investigate to their application to the local industry and community organizations, frequently using a multidisciplinary point of view, to enhance the progress in a wide variety of fields (aeronautics, automotive, biomedical, electrical and renewable energy, communications, environmental, electronic components, etc.). Most investigations in the fields of science and engineering require the work of multidisciplinary teams, representing a stockpile of research projects in different stages (final year projects, master’s or doctoral studies). In this context, this Topic offers a framework for integrating interdisciplinary research, drawing together experimental and theoretical contributions in a wide variety of fields
    corecore