15,534 research outputs found

    The Modular Organization of Protein Interactions in Escherichia coli

    Get PDF
    Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a ‘systems’ view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins (∼45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks

    Evolutionary constraints on the complexity of genetic regulatory networks allow predictions of the total number of genetic interactions

    Full text link
    Genetic regulatory networks (GRNs) have been widely studied, yet there is a lack of understanding with regards to the final size and properties of these networks, mainly due to no network currently being complete. In this study, we analyzed the distribution of GRN structural properties across a large set of distinct prokaryotic organisms and found a set of constrained characteristics such as network density and number of regulators. Our results allowed us to estimate the number of interactions that complete networks would have, a valuable insight that could aid in the daunting task of network curation, prediction, and validation. Using state-of-the-art statistical approaches, we also provided new evidence to settle a previously stated controversy that raised the possibility of complete biological networks being random and therefore attributing the observed scale-free properties to an artifact emerging from the sampling process during network discovery. Furthermore, we identified a set of properties that enabled us to assess the consistency of the connectivity distribution for various GRNs against different alternative statistical distributions. Our results favor the hypothesis that highly connected nodes (hubs) are not a consequence of network incompleteness. Finally, an interaction coverage computed for the GRNs as a proxy for completeness revealed that high-throughput based reconstructions of GRNs could yield biased networks with a low average clustering coefficient, showing that classical targeted discovery of interactions is still needed.Comment: 28 pages, 5 figures, 12 pages supplementary informatio

    Synthetic biology—putting engineering into biology

    Get PDF
    Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis—synthetic biology’s system fabrication process—supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file

    Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis

    Full text link
    The genetic regulatory network (GRN) plays a key role in controlling the response of the cell to changes in the environment. Although the structure of GRNs has been the subject of many studies, their large scale structure in the light of feedbacks from the metabolic network (MN) has received relatively little attention. Here we study the causal structure of the GRNs, namely the chain of influence of one component on the other, taking into account feedback from the MN. First we consider the GRNs of E. coli and B. subtilis without feedback from MN and illustrate their causal structure. Next we augment the GRNs with feedback from their respective MNs by including (a) links from genes coding for enzymes to metabolites produced or consumed in reactions catalyzed by those enzymes and (b) links from metabolites to genes coding for transcription factors whose transcriptional activity the metabolites alter by binding to them. We find that the inclusion of feedback from MN into GRN significantly affects its causal structure, in particular the number of levels and relative positions of nodes in the hierarchy, and the number and size of the strongly connected components (SCCs). We then study the functional significance of the SCCs. For this we identify condition specific feedbacks from the MN into the GRN by retaining only those enzymes that are essential for growth in specific environmental conditions simulated via the technique of flux balance analysis (FBA). We find that the SCCs of the GRN augmented by these feedbacks can be ascribed specific functional roles in the organism. Our algorithmic approach thus reveals relatively autonomous subsystems with specific functionality, or regulatory modules in the organism. This automated approach could be useful in identifying biologically relevant modules in other organisms for which network data is available, but whose biology is less well studied.Comment: 15 figure

    Contextualizing context for synthetic biology--identifying causes of failure of synthetic biological systems.

    Get PDF
    Despite the efforts that bioengineers have exerted in designing and constructing biological processes that function according to a predetermined set of rules, their operation remains fundamentally circumstantial. The contextual situation in which molecules and single-celled or multi-cellular organisms find themselves shapes the way they interact, respond to the environment and process external information. Since the birth of the field, synthetic biologists have had to grapple with contextual issues, particularly when the molecular and genetic devices inexplicably fail to function as designed when tested in vivo. In this review, we set out to identify and classify the sources of the unexpected divergences between design and actual function of synthetic systems and analyze possible methodologies aimed at controlling, if not preventing, unwanted contextual issues

    Modeling the architecture of depolymerase-containing receptor binding proteins in Klebsiella phages

    Get PDF
    Klebsiella pneumoniae carries a thick polysaccharide capsule. This highly variable chemical structure plays an important role in its virulence. Many Klebsiella bacteriophages recognize this capsule with a receptor binding protein (RBP) that contains a depolymerase domain. This domain degrades the capsule to initiate phage infection. RBPs are highly specific and thus largely determine the host spectrum of the phage. A majority of known Klebsiella phages have only one or two RBPs, but phages with up to 11 RBPs with depolymerase activity and a broad host spectrum have been identified. A detailed bioinformatic analysis shows that similar RBP domains repeatedly occur in K. pneumoniae phages with structural RBP domains for attachment of an RBP to the phage tail (anchor domain) or for branching of RBPs (T4gp10-like domain). Structural domains determining the RBP architecture are located at the N-terminus, while the depolymerase is located in the center of protein. Occasionally, the RBP is complemented with an autocleavable chaperone domain at the distal end serving for folding and multimerization. The enzymatic domain is subjected to an intense horizontal transfer to rapidly shift the phage host spectrum without affecting the RBP architecture. These analyses allowed to model a set of conserved RBP architectures, indicating evolutionary linkages

    Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology

    Get PDF
    Abstract Background In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN). Results The RNN topology is a weighted directed graph derived from PPI network, and it is a natural representation of the topological dependences between proteins within the PPI network. Similar to the original PPI network, we have observed that essential proteins tend to be hub proteins in RNN topology. Additionally, essential genes are enriched in clusters containing many hub proteins in RNN topology (RNN protein clusters). Based on these two properties of essential genes in RNN topology, we have proposed a new measure; the RNN cluster centrality. Results from a variety of PPI networks demonstrate that RNN cluster centrality outperforms other centrality measures with regard to the proportion of selected proteins that are essential proteins. We also investigated the biological importance of RNN clusters. Conclusions This study reveals that RNN cluster centrality provides the best correlation of protein essentiality and placement of proteins in PPI network. Additionally, merged RNN clusters were found to be topologically important in that essential proteins are significantly enriched in RNN clusters, and biologically important because they play an important role in many Gene Ontology (GO) processes.http://deepblue.lib.umich.edu/bitstream/2027.42/78257/1/1471-2105-11-505.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/2/1471-2105-11-505-S1.DOChttp://deepblue.lib.umich.edu/bitstream/2027.42/78257/3/1471-2105-11-505.pdfPeer Reviewe
    corecore