3,337 research outputs found

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    An interactively recurrent functional neural fuzzy network with fuzzy differential evolution and its applications

    Get PDF
    In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE) learning method was proposed for solving the control and the prediction problems. The traditional differential evolution (DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer, the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness of the proposed method

    An Optimized Type-2 Self-Organizing Fuzzy Logic Controller Applied in Anesthesia for Propofol Dosing to Regulate BIS

    Get PDF
    During general anesthesia, anesthesiologists who provide anesthetic dosage traditionally play a fundamental role to regulate Bispectral Index (BIS). However, in this paper, an optimized type-2 Self-Organizing Fuzzy Logic Controller (SOFLC) is designed for Target Controlled Infusion (TCI) pump related to propofol dosing guided by BIS, to realize automatic control of general anesthesia. The type-2 SOFLC combines a type-2 fuzzy logic controller with a self-organizing (SO) mechanism to facilitate online training while able to contend with operational uncertainties. A novel data driven Surrogate Model (SM) and Genetic Programming (GP) based strategy is introduced for optimizing the type-2 SOFLC parameters offline to handle inter-patient variability. A pharmacological model is built for simulation in which different optimization strategies are tested and compared. Simulation results are presented to demonstrate the applicability of our approach and show that the proposed optimization strategy can achieve better control performance in terms of steady state error and robustness

    Harnessing Deep Learning Techniques for Text Clustering and Document Categorization

    Get PDF
    This research paper delves into the realm of deep text clustering algorithms with the aim of enhancing the accuracy of document classification. In recent years, the fusion of deep learning techniques and text clustering has shown promise in extracting meaningful patterns and representations from textual data. This paper provides an in-depth exploration of various deep text clustering methodologies, assessing their efficacy in improving document classification accuracy. Delving into the core of deep text clustering, the paper investigates various feature representation techniques, ranging from conventional word embeddings to contextual embeddings furnished by BERT and GPT models.By critically reviewing and comparing these algorithms, we shed light on their strengths, limitations, and potential applications. Through this comprehensive study, we offer insights into the evolving landscape of document analysis and classification, driven by the power of deep text clustering algorithms.Through an original synthesis of existing literature, this research serves as a beacon for researchers and practitioners in harnessing the prowess of deep learning to enhance the accuracy of document classification endeavors

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations
    • …
    corecore