2,315 research outputs found

    Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives

    Get PDF
    A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the objective ijECij(fij)\sum_{ij\in E} C_{ij}(f_{ij}) over feasible flows ff, where on every arc ijij of the network, CijC_{ij} is a convex function. We give a strongly polynomial algorithm for the case when all CijC_{ij}'s are convex quadratic functions, settling an open problem raised e.g. by Hochbaum [1994]. We also give strongly polynomial algorithms for computing market equilibria in Fisher markets with linear utilities and with spending constraint utilities, that can be formulated in this framework (see Shmyrev [2009], Devanur et al. [2011]). For the latter class this resolves an open question raised by Vazirani [2010]. The running time is O(m4logm)O(m^4\log m) for quadratic costs, O(n4+n2(m+nlogn)logn)O(n^4+n^2(m+n\log n)\log n) for Fisher's markets with linear utilities and O(mn3+m2(m+nlogn)logm)O(mn^3 +m^2(m+n\log n)\log m) for spending constraint utilities. All these algorithms are presented in a common framework that addresses the general problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general problem even in an approximate sense (see Hochbaum [1994]), we show that assuming the existence of certain black-box oracles, one can give an algorithm using a strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms can be derived by implementing these oracles in the respective settings

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Modeling and Optimization of Resource Allocation in Supply Chain Management Problems

    Get PDF
    Resource allocation in supply chain management studies how to allocate the limited available resources economically/optimally to satisfy the demands. It is an important research area in operations research. This dissertation focuses on the modeling and optimization of three problems. The first part of the dissertation investigates an important and unique problem in a supply chain distribution network, namely minimum cost network flow with variable lower bounds (MCNF-VLB). This type of network can be used to optimize the utilization of distribution channels (i.e., resources) in a large supply network, in order to minimize the total cost while satisfying flow conservation, lower and upper bounds, and demand/supply constraints. The second part of the dissertation introduces a novel method adopted from multi-product inventory control to optimally allocate the cache space and the frequency (i.e., resources) for multi-stream data prefetching in computer science. The objective is to minimize the cache miss level (backorder level), while satisfying the cache space (inventory space) and the total prefetching frequency (total order frequency) constraints. Also, efforts have also been made to extend the model for a multi-level, multi-stream prefetching system. The third part of the dissertation studies the joint capacity (i.e., resources) and demand allocation problem in a service delivery network. The objective is to minimize the total cost while satisfying a required service reliability, which measures the probability of satisfying customer demand within a delivery time interval

    Auction algorithms for generalized nonlinear network flow problems

    Full text link
    Thesis (Ph.D.)--Boston UniversityNetwork flow is an area of optimization theory concerned with optimization over networks with a range of applicability in fields such as computer networks, manufacturing, finance, scheduling and routing, telecommunications, and transportation. In both linear and nonlinear networks, a family of primal-dual algorithms based on "approximate" Complementary Slackness (ε-CS) is among the fastest in centralized and distributed environments. These include the auction algorithm for the linear assignment/transportation problems, ε-relaxation and Auction/Sequential Shortest Path (ASSP) for the min-cost flow and max-flow problems. Within this family, the auction algorithm is particularly fast, as it uses "second best" information, as compared to using the more generic ε-relaxation for linear assignment/transportation. Inspired by the success of auction algorithms, we extend them to two important classes of nonlinear network flow problems. We start with the nonlinear Resource Allocation Problem (RAP). This problem consists of optimally assigning N divisible resources to M competing missions/tasks each with its own utility function. This simple yet powerful framework has found applications in diverse fields such as finance, economics, logistics, sensor and wireless networks. RAP is an instance of generalized network (networks with arc gains) flow problem but it has significant special structure analogous to the assignment/transportation problem. We develop a class of auction algorithms for RAP: a finite-time auction algorithm for both synchronous and asynchronous environments followed by a combination of forward and reverse auction with ε-scaling to achieve pseudo polynomial complexity for any non-increasing generalized convex utilities including non-continuous and/ or non-differentiable functions. These techniques are then generalized to handle shipping costs on allocations. Lastly, we demonstrate how these techniques can be used for solving a dynamic RAP where nodes may appear or disappear over time. In later part of the thesis, we consider the convex nonlinear min-cost flow problem. Although E-relaxation and ASSP are among the fastest available techniques here, we illustrate how nonlinear costs, as opposed to linear, introduce a significant bottleneck on the progress that these algorithms make per iteration. We then extend the core idea of the auction algorithm, use of second best to make aggressive steps, to overcome this bottleneck and hence develop a faster version of ε-relaxation. This new algorithm shares the same theoretical complexity as the original but outperforms it in our numerical experiments based on random test problem suites

    Dynamic lot size problems with one-way product substitution

    Get PDF
    Department of Logistics2004-2005 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore