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Dynamic Lot Size Problems with

One-way Product Substitution

Abstract

We consider two multi-product dynamic lot size models with one-way substitution,

where the products can be indexed such that a lower-index product may be used to sub-

stitute the demand of a higher-index product. In the first model, the product used to

meet the demand of another product must be physically transformed into the latter and

incur a conversion cost. In the second model, a product can be directly used to satisfy the

demand of another product without requiring any physical conversion. Both problems are

computationally intractable in general. We develop dynamic programming algorithms that

solve the problems in polynomial time when the number of products is fixed. A heuristic

is also developed, and computational experiments are conducted to test the effectiveness

of the heuristic and the efficiency of the optimal algorithm.



1. Introduction

This paper considers a finite horizon, multi-product, dynamic lot size (DLS) problem

with one-way product substitution. There are m products, each with known demands in

an n-period planning horizon. The products are indexed such that a lower-index product

may be used to substitute for a higher-index product. We consider two types of product

substitution: substitution with conversion (SWC) and substitution without conversion

(SWO).

In an SWC problem, a lower-index product must be converted through physical trans-

formation to substitute the demand of another higher-index product. In an SWO problem,

a lower-index product can be directly used to satisfy the demand of a higher-index product

without requiring any physical transformation. The difference between SWC and SWO,

from the modeling standpoint, is that in an SWC problem, the substitution takes place

when a lower-index product is converted into a higher-index product. If the converted

product is not immediately used to satisfy demand, it becomes the inventory of the (con-

verted) higher-index product. In an SWO problem, however, substitution always takes

place when a lower-index product is used to satisfy the demand of a higher-index product.

One-way product substitution problems both with and without conversion have been

the focus of many studies, most of which have been motivated by real world applications.

The benefits of product substitution have long been recognized in these studies. For

example, allowing the production and inventory of a product to be used to meet the

demand of another (lower grade) product may offer opportunities for economies of scale in

managing the cycle stocks of the former. Another significant benefit of product substitution

is the possibility of inventory pooling to hedge against demand uncertainties and to help

reduce safety stocks.

Similar to the study of many other production planning and inventory problems, the

research on one-way inventory substitution problems in the literature follows two streams:

Stochastic models deal with demand and supply uncertainties and study issues such as
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the effect of inventory pooling with product substitution, while deterministic models in-

vestigate the dynamics of production and cycle inventory with the presence of economies

of scale. Examples of single-period stochastic inventory models for one-way product sub-

stitution include recent works by Bassok et al. (1999), Hsu and Bassok (1999), Smith and

Agrawal (2000), and Rao et al. (2004). Smith and Agrawal (2000) have also provided a

thorough review on the study of product substitution in the literature in various contexts

such as retailing, yield management in the airline industry, and resource allocation.

We now offer a more detailed discussion on the other stream of research on deter-

ministic models, which is closely related to the problem studied in this paper. Drezner et

al. (1995) and Gurnani and Drezner (2000) discussed an application of the SWC problem,

where a more generic product can be transformed (through customization or upgrading)

into another less generic product. For example, a retailer could break a larger package of a

product to substitute for a shortage of the same product packaged in smaller sizes. They as-

sumed that value is added in the transformation, and therefore, the inventory holding cost

of the more generic product is less than that of the less generic product. They formulated

the problem as a continuous-time economic order quantity (EOQ) model and obtained op-

timal order quantities for all the products. Swaminathan and Kucukyavuz (2001) applied

the SWC problem to the biotechnology industry. In their application, a reagent product

used for DNA amplification can be carried in three forms. The reagent product in a more

bulky form can be converted and packaged into another more specialized packaging form.

However, unlike the above retailer’s example in which the conversion involves simple re-

packaging, converting a form of reagent packaging into another may require a complicated

and costly process in which the reagent has to be synthesized. The problem is formu-

lated both as a continuous-time EOQ model and a discrete-time DLS model. The DLS

model, which deals with additional constraints such as product life and maximum number

of conversions, assumes stationary setup, holding, and conversion costs, and is solved as a

constrained shortest path problem.
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Examples of SWO can be found in many applications such as retailing (substituting a

product for which there is a shortage with another similar product), airline ticket booking

(substituting a lower-class seat with a higher-class seat), and manufacturing (substituting

a lower-quality component with a higher-quality component). Pentico (1974, 1976) studied

an SWO problem in the retailing industry, where a (higher-grade) product can be used

to substitute for another (possibly lower-grade) product that is in short supply. Pentico

formulated the problem as a deterministic inventory optimization model in a continuous-

time setting and solves the problem using a dynamic programming (DP) approach. Chand

et al. (1994) considered an SWO problem in a manufacturing environment where some

components or parts may be used to substitute for others in an assembly process. Utilizing

DP, they derived optimal purchase quantities of the parts for their continuous-time EOQ-

based optimization model. Jones et al. (1995) formulated a single-period SWO problem as

a specially structured plant location problem and solved it using a network flow approach.

Among the limited number of papers on the deterministic models, we observe that

most of them are continuous-time EOQ models that consider substitution among two to

three products. In this paper, we formulate two variants of the one-way product substitu-

tion problem as multi-product DLS models, one for the SWC problem and the other for

the SWO problem. We consider very general models with multiple products and with all

demands, as well as production costs (fixed and variable), inventory costs, and conversion

costs, being time-varying and different across products. In our models, product shortages

or backlogging are not allowed. The demand of each product in a period can be satisfied

by (i) the production of the product in the same period; (ii) inventories of the product

produced in an earlier period; (iii) (in the SWC problem) available stocks converted in the

current or earlier periods from lower-index products; or (iv) (in the SWO problem) avail-

able stocks of lower-index products in the current period. The objective of our problem

is to satisfy the demand of all products at a minimum setup, production, inventory, and

(possibly) conversion cost.

3



Our models are useful to organizations that are seeking opportunities to create greater

flexibility in their production and inventory planning by exploring the possibility of product

substitution. As pointed out by Chan et al. (2002), DLS models such as ours can help a

planner make decisions on production and cycle inventory (based on forecasts of demand

over a given planning horizon) that balance the trade-offs between fixed production cost

and variable costs of production, inventory, and, in our models, conversion. DLS models

are particularly useful in situations where demand is non-stationary, which is frequently

encountered in production planning, such as Materials Requirements Planning. Further

to these planning decisions, the planner typically determines additional safety stock to

cope with uncertainties in demand and supply. One clear weakness of our model, as with

all deterministic models in the literature, is its inability to address the issue of demand

uncertainty. This limits its applicability to some real world situations, such as airline ticket

booking, where the main motivation for product substitution is the demand uncertainty

and not economies of scale in production and inventory.

Our DLS problems belong to a class of multi-product DLS problems, which are gen-

eralizations of the classical single-item Wagner–Whitin DLS problem (Wagner and Whitin

1958). (See Aggarwal and Park (1993) for an extensive review of the classical DLS prob-

lem.) Due to the abundance of research in this class, we discuss only a few papers that

are related to our work.

Herer and Tzur (2001) studied a discrete-time dynamic transshipment problem, where

there are two locations with deterministic demands over a finite planning horizon. The

two locations replenish their stocks from a single supplier and transshipments between

locations are allowed. This transshipment problem can be viewed as a DLS problem

with two products, which can be used to substitute for each other with certain costs.

Herer and Tzur developed a DP algorithm to solve a special form of the two-location

transshipment problem, where replenishment, inventory holding, and transshipment costs

are all stationary (i.e., these costs are constant over the planning horizon).
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Lee and Luss (1987) examined a dynamic deterministic capacity expansion problem

with multiple facility types. A facility type can be converted to another at a certain

conversion cost. Their general model, which includes concave cost functions and allows

for backlogging, can be viewed as a multi-product DLS problem with substitution between

products. They presented a DP approach that solves a few restricted instances of the

general model in polynomial time.

The models that we consider in this paper can also be formulated as special instances

of the minimum concave-cost network flow problem (Erickson et al. 1987, Guisewite and

Pardalos 1993, Lamar 1993, Veinott 1969, and Zangwill 1968). Efficient algorithms have

been developed to solve this network flow problem on some special networks, for example,

strong-series-parallel networks (Ward 1999) and networks with a fixed number of sources

and nonlinear arc costs (Tuy et al. 1995). However, the constructed networks that are

equivalent to our models (see discussions of network construction in Sections 2 and 3) do

not belong to any of these special networks.

The rest of the paper is organized as follows. In Section 2, we present the model for the

SWC problem. We discuss its computational complexity as well as some properties of its

optimal solution. A DP algorithm is then developed to solve the problem. In Section 3, we

discuss another model for the SWO problem. We show the relationship between the first

and second models and develop a more efficient algorithm to solve the second model. In

Section 4, we develop a heuristic algorithm for solving large-sized problems. Computational

experiments are conducted to test the efficiency and effectiveness of our algorithms. We

conclude the paper in Section 5.

2. One-way Substitution with Conversion

2.1. Problem Formulation

In this section, we consider the SWC problem with m products denoted by P1, P2, . . . ,

Pm, where for any j and k (1 ≤ j < k ≤ m), Pj can be converted to Pk with a conversion
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cost that depends on the time the conversion occurs. In each time period, the following

sequence of events is assumed: (i) production and delivery of all products, (ii) conversion

of products, and (iii) demand of all products. In step (ii), the conversion of P1 to other

products takes place first, followed by the conversion of P2 to other products, followed in

turn by the conversion of P3 to other products, and so on.

The following notation is used in our model:

m = total number of different products;

T = total number of time periods in the planning horizon;

Dtj = demand of Pj in period t, where 1 ≤ t ≤ T and 1 ≤ j ≤ m;

Ktj = setup cost of the production of Pj in period t, where 1 ≤ t ≤ T and 1 ≤ j ≤ m;

ptj = unit production cost of Pj in period t, where 1 ≤ t ≤ T and 1 ≤ j ≤ m;

htj = unit holding cost of Pj from period t to period t+1, where 1 ≤ t ≤ T −1 and

1 ≤ j ≤ m;

ctjk = unit conversion cost from Pj to Pk in period t, where 1 ≤ t ≤ T and 1 ≤ j < k ≤ m.

The conversion cost in our model is applicable to general situations where the conver-

sion process uses resources such as utility, labor, and equipment, and costs may vary from

one period to another. We remark that in some real world applications, the conversion

cost may not differ from period to period (for example, simple re-packaging in the retailer

example cited in Section 1). However, even under the assumption of stationary conversion

costs, i.e., ctjk = cjk for all t, theoretically the SWC and SWO problems are not identical.

One reason for this is the fact that with conversion in the SWC problem and time-varying

inventory holding costs for different products, a decision maker has the option of converting

a lower-index product and not using the converted product immediately for substitution.

This option is not available in the SWO problem. However, if we further assume that in

any period t, the inventory holding cost for a lower-index product i is no larger than that

of a higher-index product j, i.e., hti ≤ htj for i < j, then the instance of the SWC problem
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becomes a special case of the SWO problem. The reason is that, in this case, the decision

maker has no incentive to convert a product, which has a lower inventory holding cost,

before it is needed to substitute for another product with a higher inventory holding cost.

All of the above parameters are assumed to be nonnegative, and a cost parameter

may be equal to +∞. The decision variables of the problem are:

xtj = number of units of product Pj produced in period t;

Itj = number of units of product Pj held in inventory from period t to period t+1;

ytjk = number of units of product Pj converted into product Pk in period t.

Define

δ(x) =

{

1, if x > 0,
0, otherwise.

Assuming a zero inventory for all products at the beginning of period 1, the SWC problem

can be formulated as the following mathematical program:

minimize

T
∑

t=1

m
∑

j=1

[

Ktjδ(xtj) + ptjxtj

]

+

T−1
∑

t=1

m
∑

j=1

htjItj +

T
∑

t=1

m−1
∑

j=1

m
∑

k=j+1

ctjkytjk

subject to Itj = It−1,j + xtj +

j−1
∑

k=1

ytkj −
m

∑

k=j+1

ytjk −Dtj (1 ≤ t ≤ T ; 1 ≤ j ≤ m)

I0j = 0 (1 ≤ j ≤ m)

Itj , xtj ≥ 0 (1 ≤ t ≤ T ; 1 ≤ j ≤ m)

ytjk ≥ 0 (1 ≤ t ≤ T ; 1 ≤ j < k ≤ m).

We denote this problem as SWCP.

Note that for simplicity, we have assumed that there is no fixed cost associated with

each conversion in SWCP. Thus, this model is applicable to situations where the effort of

setting up the conversion process is minimal, for example, when conversion involves only

breaking larger packages of a product to substitute for a shortage of the same product

packaged in smaller sizes. For other applications, it is more reasonable to include fixed
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conversion costs. In Section 5, we will discuss how our solution method can be extended

to handle such situations.

2.2. Some Properties of SWCP

The following theorem implies that the existence of a polynomial time algorithm for

this problem is unlikely.

Theorem 1. SWCP is NP-hard in the strong sense.

The proof of this theorem will be made apparent in the next section, when we establish

that the SWO problem studied in that section is strongly NP-hard and that it can be

transformed in polynomial time into a special instance of SWCP.

In the next subsection, we will develop a DP algorithm to solve SWCP, which runs in

polynomial time with a fixed number of products m. For ease of exposition, we assume that

all demands are strictly positive in our algorithm development. The inclusion of the case

where some demands can be zero will not change the structure of our solution methods,

but will make our argument a little more tedious.

We now represent SWCP as a minimum concave cost network flow problem on a

specially constructed network G with a single source and multiple destination nodes (see

Figure 1). The source node is denoted as v0. There are mT destination nodes, which can

be categorized into m levels. The tth node at the jth level is denoted as vtj . Associated

with each destination node vtj is a demand quantity Dtj . The arcs in this network can

be categorized into three groups. The first group consists of “production” arcs v0 → vtj ,

where t = 1, 2, . . . , T and j = 1, 2, . . . ,m. A flow xtj on arc v0 → vtj represents a setup

and production of product Pj in period t. The second group consists of “inventory” arcs

vtj → vt+1,j, where t = 1, 2, . . . , T−1 and j = 1, 2, . . . ,m. A flow Itj on arc vtj → vt+1,j

represents a holding of inventory of Pj from period t into the next period. The third group

consists of “conversion” arcs vtj → vtk, where t = 1, 2, . . . , T and 1 ≤ j < k ≤ m. A flow
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ytjk on arc vtj → vtk represents a conversion from product Pj to product Pk occurred in

period t.

The objective of the network flow problem, denoted as NF, is to find a feasible flow

in this network such that the total cost is minimized, while the demand associated with

each destination node is satisfied. It is easy to show the equivalence of SWCP and NF.

Note that NF is a single-source minimum concave cost network flow problem, and that we

have the following important property.

Property 1. There exists an optimal solution to a single-source minimum concave cost

network flow problem with at most one positive incoming flow into each node.

Proof: See Zangwill (1968).

Applying Property 1 to problem NF and to SWCP, we have the next property.

Property 2. There exists an optimal solution to SWCP such that for every t ∈ [1, T ]

and j ∈ [1,m], the Dtj units of demand of product j in period t are all satisfied by the

production of a single product Pπ that takes place in a single period τ , plus a series of

conversions and inventory holdings (if necessary), for some π ≤ j and τ ≤ t.

Property 2 implies that it is optimal to substitute the demand of a product in a

certain period with another single product. This property holds in our model because

of the assumptions that demands are deterministic, all cost functions are concave (the

cost functions in our model are all special forms of concave functions), and production

and conversion capacities are unlimited. In other situations with capacity restrictions or

stochastic demands, it may be desirable to use a combination of two or more products to

substitute for the demand of a single product.

Suppose that the demand of Pj in period t is satisfied by the production of Pπtj

that takes place in period τtj , where 1 ≤ τtj ≤ t ≤ T and 1 ≤ πtj ≤ j ≤ m (see

Property 2). The following property characterizes the relationship among (τt1, πt1), . . .,
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(τtm, πtm), (τt+1,1, πt+1,1), . . ., (τt+1,m, πt+1,m).

Property 3. There exists an optimal solution to SWCP that satisfies Properties 1 and 2

and the following condition: For j = 1, 2, . . . ,m,

(τt+1,j , πt+1,j) ∈ Φj ,

where Φj =
{

(τtj , πtj), (τt+1,1, πt+1,1), . . . , (τt+1,j−1, πt+1,j−1), (t+1, j)
}

.

Proof. By Property 1, there is at most one positive incoming flow into node vt+1,j . There

are three possible cases:

• Case 1: The incoming flow at node vt+1,j comes from node vtj . In this case, the demand

of Pj in period t + 1 is satisfied by the same production run as that of Pj in period t,

and therefore, (τt+1,j, πt+1,j) = (τtj , πtj).

• Case 2: The incoming flow at node vt+1,j comes from node vt+1,k, for some k =

1, 2, . . . , j−1. In this case, the demand of Pj in period t+1 is satisfied by the same produc-

tion run as that of Pk in the same period, and therefore, (τt+1,j , πt+1,j) = (τt+1,k, πt+1,k).

• Case 3: The incoming flow at node vt+1,j comes directly from v0. In this case,

(τt+1,j, πt+1,j) = (t+1, j).

Combining Cases 1, 2, and 3 gives us the desired result.

2.3. DP Algorithm for Solving SWCP

With Properties 1, 2, and 3, we now develop a backward DP algorithm for solving

SWCP. Note that all of the costs except for the setup cost in our model are linear with the

number of units involved. Thus, the costs involved include a fixed setup cost in period τ to

produce Pπ and a variable cost to satisfy the demand of Pj in period t with the production

of Pπ in period τ . This variable cost consists of the production cost, conversion cost (if

any), and inventory holding cost (if any).

Define

Γtj =
{

(τ, π)
∣

∣ τ = 1, 2, . . . , t; π = 1, 2, . . . , j
}

,
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which is the set of all time–product combinations that could be used to satisfy the demand

of Pj in period t. For 1 ≤ t ≤ T and (τtj , πtj) ∈ Γtj (j = 1, 2, . . . ,m), we denote

SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) as a restricted version of SWCP that satisfies

the following conditions:

(i) The demand of all products in periods t through T is met by production in periods 1

through T .

(ii) The demand of Pj (1 ≤ j ≤ m) in period t is satisfied by the production of product

Pπtj
that takes place in period τtj.

(iii) The objective of the problem is to find a solution that satisfies Properties 1, 2, and 3,

and minimizes the total variable cost plus all the setup costs incurred in periods t

through T to meet all demands in periods t through T .

We define the following quantities:

• Ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) = minimum objective value for problem

SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm);

• ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) = total variable cost needed to satisfy

the demands of P1, P2, . . . , Pm in period t in an optimal solution of

SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm);

• st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) = total setup cost incurred in period t in an optimal

solution of SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm).

It is noteworthy that the optimal value function Ft includes not only all costs incurred in

periods t, t+1, . . . , T , but also part of the variable cost incurred before period t. It is this

newly designed cost-counting scheme that leads to the following DP formulation, which

can be solved in polynomial time when m is fixed.

By the above definition, the optimal objective value of SWCP is given by

min
{

F1(1, 1, . . . , 1;π11, π12, . . . , π1m)
∣

∣ π1k ∈ {1, 2, . . . , k}; k = 1, 2, . . . ,m
}

.

We now develop a recurrence relation to calculate Ft(τt1, τt2, . . . , τtm;

πt1, πt2, . . . , πtm), for 1 ≤ t ≤ T . Suppose that in an optimal solution to problem
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SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm), the demand of Pk (1 ≤ k ≤ m) in period t + 1

is satisfied by the production of Pπt+1,k
that took place in period τt+1,k. By Property 3,

we have the following recurrence relation:

Ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm)

= ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) + st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm)

+ min
{

Ft+1(τt+1,1, τt+1,2, . . . , τt+1,m;πt+1,1, πt+1,2, . . . , πt+1,m)
∣

∣

∣
(τt+1,k, πt+1,k) ∈ Φk; k = 1, 2, . . . ,m

}

, (1)

for 1 ≤ t ≤ T and (τtj , πtj) ∈ Γtj (j = 1, 2, . . . ,m), where Φk is defined in Property 3. The

boundary conditions are:

FT+1(τT+1,1, τT+1,2, . . . , τT+1,m;πT+1,1, πT+1,2, . . . , πT+1,m) = 0,

for (τT+1,j , πT+1,j) ∈ ΓT+1,j (j = 1, 2, . . . ,m).

We now turn our attention to the computation of the values of ft(τt1, τt2, . . . , τtm;

πt1, πt2, . . . , πtm) and st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm). Define gtj(τ, π) as the mini-

mum variable cost needed to satisfy a unit demand of Pj in period t by the production of

product Pπ that took place in period τ , for 1 ≤ τ ≤ t ≤ T and 1 ≤ π ≤ j ≤ m. It is easy to

see that gtj(τ, π) is equal to the production cost pτπ plus the shortest “distance” from node

vτπ to node vtj in network G if we view the unit cost of an arc as its arc length. Hence,

all gtj(τ, π) values can be determined by solving an all-pairs shortest path problem, which

requires a running time of O
(

(mT )3
)

(see p. 156 of Ahuja et al. 1993). In fact, due to the

special structure of network G, the values of gtj(τ, π) can also be determined in O(m3T 2)

time using a recursive procedure. However, this will not affect the overall complexity of

our algorithm.

With the definition of ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm), we clearly have

ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) =
m

∑

k=1

Dtkgtk(τtk, πtk).
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Since 1 ≤ τtj ≤ T and 1 ≤ πtj ≤ j for j = 1, 2, . . . ,m, the number of combinations of

t, τt1, τt2, . . . , τtm, πt1, πt2, . . . , πtm is O(m!Tm+1). This implies that, given all the values

of gtj(τ, π), we can determine all the values of
{

ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm)
}

in

O
(

(m + 1)!Tm+1
)

time.

Note that the value of st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) can be determined without

knowing the optimal solution of SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm). Suppose that

in an optimal solution to SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm), the demand of Pj

(1 ≤ j ≤ m) in period τ (t ≤ τ ≤ T ) is satisfied by the production of Pπ that took place in

period t. We must then have a setup in period t to produce product Pπ. By Property 1,

the demand of Pπ in period t must be satisfied by its own production in the same period.

By definition of τtπ, we have τtπ = t. From the above discussion, we see that

st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) =
∑

π∈{πtk |τtk=t;k=1,...,m}

Ktπ,

for t = 1, 2, . . . , T and (τtj , πtj) ∈ Γtj (j = 1, 2, . . . ,m). This equation implies that all

of the values of st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) can be obtained in O
(

(m + 1)!Tm+1
)

time as well.

Finally, note that the number of elements in the set
{

(τt+1,1, τt+1,2, . . . , τt+1,m;

πt+1,1, πt+1,2, . . . , πt+1,m)
∣

∣ (τt+1,k, πt+1,k) ∈ Φk; k = 1, 2, . . . ,m
}

is at most (m + 1)!.

Hence, evaluating the minimization on the right hand side of equation (1) takes O
(

(m+1)!
)

time. As mentioned earlier, the number of combinations of t, τ1, τ2, . . . , τm, π1, π2, . . . , πm

is O(m!Tm+1). Hence, the effort to compute all values of
{

Ft(τt1, τt2, . . . , τtm;

πt1, πt2, . . . , πtm)
}

takes O
(

(m + 1)!m!Tm+1
)

time, provided that all of the values of

ft(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) and st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm) are available.

Together with the preprocessing efforts discussed earlier, we see that the overall complexity

of our algorithm is O
(

(m+1)!m!Tm+1
)

. This implies that when the number of products

m is fixed, the running time of our algorithm is O(Tm+1).
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3. One-way Substitution without Conversion

3.1. Problem Formulation

In this section, we consider the SWO problem (denoted as SWOP) with m products

P1, P2, . . . , Pm. In this problem, these m products represent m different grades of a single

product, where product P1 has the highest grade, P2 has the second-highest grade, and

so on. We assume that a direct downward substitution from a higher-grade product to

a lower-grade product is always allowed and that no physical transformation is incurred

when the substitution takes place. That is, if 1 ≤ j < k ≤ m, then Pj can substitute Pk

without incurring any conversion cost. This type of substitution may occur in the situation

where a customer’s order for some lower-grade product arrives when such product is out

of stock. The supplier may choose to use the inventory of some higher-grade product to

fulfill the order and charge the price of the lower-grade product. This can avoid the setup

cost of directly producing the lower-grade product. However, the production cost and

holding cost for the higher-grade product are usually higher than those for the lower-grade

product (although we do not make this assumption in our model). Thus, the challenge to

the supplier is to plan the replenishment of all products so as to minimize the total setup,

production, and inventory holding costs.

In SWOP, there are T periods in the planning horizon. In each time period t, the

demand of product Pk can be satisfied either by the inventory of Pk at the end of period

t−1, or by the direct substitution with a higher-grade product Pj (where j < k), or

by the new setup and production of Pk in the same period t. Recall that in SWCP,

if a substitution is necessary, a lower-index product could be converted and held as the

inventory of another higher-index product before it is used to meet the demand of the

latter. On the contrary, no conversion is needed in SWOP. Thus, wherever a substitution

takes place, a higher-grade product is always held in its own inventory (if an inventory is

necessary) until the moment when it is used to meet the demand of another lower-grade

product.
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In the following discussion, we will first demonstrate that SWOP can actually be

formulated as a special case of SWCP. This implies that the DP algorithm developed in

Section 2 can be used to solve the problem. However, in this section we will develop a

more efficient algorithm for this special case.

We reuse the notation m, T , Dtj , Ktj , ptj , htj , xtj , Itj , and ytjk as defined in Sec-

tion 2. Given any instance of SWOP with parameters m, T , Dtj , Ktj , ptj , and htj , we

construct the corresponding instance of SWCP with 2m “products” and T periods, where

its parameters m′, T ′, D′
tj , K ′

tj , p′tj , h′
tj , and c′tjk are defined as follows:

m′ = 2m;

T ′ = T ;

D′
tj =

{

0, if j is odd,
Dt,j/2, if j is even;

K ′
tj =

{

Kt,(j+1)/2, if j is odd,
+∞, if j is even;

p′tj =

{

pt,(j+1)/2, if j is odd,
+∞, if j is even;

h′
tj =

{

ht,(j+1)/2, if j is odd,
+∞, if j is even;

c′tjk =

{

0, if j is odd, k is even, and k > j,
+∞, otherwise.

Note that in this construction, each product of SWOP is broken into two. This includes

a product (odd level product) that inherits the production costs of the original but has

no demand, and a second product (even level product) that inherits the demand and

substitution pattern of the original product but is prohibitively expensive to produce. The

network for the above constructed instance of SWCP is depicted in Figure 2, in which

the arcs with infinite cost are not shown.

In this network, there is no cost of conversion. However, once a product gets converted

into a higher-indexed product, it will arrive at an even level. Once it arrives at such a
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level, it cannot be held in inventory (since there is no horizontal arc at an even level). This

satisfies the requirement of SWOP, where the original product is always held in its own

inventory until the moment when it is used to meet the demand of a higher-index product.

3.2. Some Properties of SWOP

We have shown that SWOP is a special case of SWCP, and the transformation from

SWOP to SWCP can be done in polynomial time. The next theorem states that this

special case remains strongly NP-hard when m is not fixed. The proof of this theorem also

serves as the proof for Theorem 1 in Section 2.

Theorem 2. SWOP is NP-hard in the strong sense.

Proof: See Appendix.

If we formulate SWOP as an instance of SWCP using the above transformation and

then directly apply the algorithm developed in Section 2 to solve it, the computational

complexity will be O
(

(2m + 1)!(2m)!T 2m+1
)

. This complexity becomes O(T 2m+1) when

m is fixed. However, by exploring the special structure of SWOP, we will develop a more

efficient DP algorithm to solve SWOP directly.

Given an arbitrary period t (1 ≤ t ≤ T ), define the latest production period of a

product Pk (1 ≤ k ≤ m) in periods 1 through t as the largest indexed period τ with

xτk > 0 and τ ≤ t (τ = 0 if such a period does not exist). Suppose some demands of a

product Pj in a period t are satisfied by a stock of product Pk (k ≤ j) in period t, which

is produced in period τ , where 1 ≤ τ ≤ t. We define the variable cost of satisfying the

per unit demand of Pj in period t by the production of Pk in period τ as the unit variable

production cost of Pk in period τ plus the total inventory costs to hold each unit of Pk

from period τ to period t. We are now ready to present a property of the optimal solution

to SWOP.
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Property 4. There exists an optimal solution to SWOP where (i) each demand Dtj

(1 ≤ t ≤ T ; 1 ≤ j ≤ m) is satisfied entirely either by the latest production of product Pj

in time periods 1 through t, or by the latest production of another lower-index product

Pk (k < j) in periods 1 through t; (ii) in the latter case, the same production of Pk also

satisfies the demand Dt,j−1 .

Proof: Condition (i) is the direct consequence of applying Property 1 to the minimum

concave cost network flow problem on the constructed network in Figure 2, which is equiv-

alent to SWOP. To prove (ii), suppose in an optimal solution that satisfies condition (i),

demand Dtj is fulfilled by some lower-index product Pk (k < j). Also suppose that in the

same solution, demand Dt,j−1 is satisfied by the latest production of product P`, where

` ≤ j − 1. If k 6= `, we can modify the solution by comparing the variable costs associated

with products Pk and P`, and selecting the cheaper one to satisfy both demands Dt,j−1 and

Dtj . It is easy to see that this modification will not increase the total cost of the solution

and will not result in a solution that violates condition (i). By repeatedly applying this

modification, we will obtain an optimal solution that satisfies conditions (i) and (ii).

3.3. DP Algorithm for Solving SWOP

In the following analysis, we only consider solutions that satisfy Property 4. For

1 ≤ t ≤ T and 0 ≤ τtj ≤ t (j = 1, 2, . . . ,m), we denote SWOPt(τt1, τt2, . . . , τtm) as a

restricted version of SWOP that satisfies the following conditions:

(i) The demand of all products in periods t through T is met by production in periods 1

through T .

(ii) The latest production of Pj (1 ≤ j ≤ m) in periods 1 through t takes place in period

τtj.

(iii) The objective of the problem is to find a solution that satisfies Property 4 and mini-

mizes the total variable cost plus all of the setup costs incurred in periods t through

T to meet all demand in periods t through T .

17



We define the following quantities:

• Ft(τt1, τt2, . . . , τtm) = minimum objective value for problem SWOPt(τt1, τt2, . . . , τtm);

• ft(τt1, τt2, . . . , τtm) = total variable cost needed to satisfy the demand of P1, P2, . . . , Pm

in period t in an optimal solution of SWOPt(τt1, τt2, . . . , τtm);

• st(τt1, τt2, . . . , τtm) = total setup cost incurred in period t in an optimal solution of

SWOPt(τt1, τt2, . . . , τtm).

Clearly, the optimal objective value of SWOP is given by

min
{

F1(τ11, τ12, . . . , τ1m)
∣

∣ τ11 = 1 and τ1j ∈ {0, 1}; j = 2, 3, . . . ,m
}

.

We now develop a recurrence relation to calculate Ft(τt1, τt2, . . . , τtm), for 1 ≤ t ≤ T .

We note that for each product Pk (k = 1, 2, . . . ,m), if the latest production period in

periods 1 through t is τtk, then the latest production period τt+1,k in periods 1 through

t+1 is either τtk or t+1. Thus, we have the following recurrence relation:

Ft(τt1, τt2, . . . , τtm) = ft(τt1, τt2, . . . , τtm) + st(τt1, τt2, . . . , τtm)

+ min
{

Ft+1(τt+1,1, τt+1,2, . . . , τt+1,m)
∣

∣

∣
τt+1,k = t+1 or τtk, for k = 1, 2, . . . ,m

}

, (2)

for 1 ≤ t ≤ T and 1 ≤ τtj ≤ t (j = 1, 2, . . . ,m). The boundary conditions are:

FT+1(τT+1,1, τT+1,2, . . . , τT+1,m) = 0,

for 1 ≤ τT+1,j ≤ T + 1 (j = 1, 2, . . . ,m).

To compute the values of ft(τt1, τt2, . . . , τtm) and st(τt1, τt2, . . . , τtm), we first define

gtj(τ ) as the minimum variable cost needed to satisfy unit demand of Pj in period t by

the production of the same product Pj that took place in period τ , for 1 ≤ τ ≤ t ≤ T and

j = 1, 2, . . . ,m. It is easy to see that

gtj(τ ) =

{

pτj , if t = τ ,
gt−1,j(τ ) + ht−1,j, if t > τ ,
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for 1 ≤ τ ≤ t ≤ T and j = 1, 2, . . . ,m. The number of combinations of t, j, and τ is

O(mT 2). Thus, all gtj(τ ) values can be determined in O(mT 2) time.

Given an optimal solution to problem SWOPt(τt1, τt2, . . . , τtm), let ztk be the min-

imum variable cost of satisfying unit demand of Pk in period t. From Property 4, we

know that demand Dtk is satisfied either by the production of Pk that took place in period

τtk, or by the production that satisfies the demand Dt,k−1. Thus, zt1 = gt1(τ1), and for

k = 2, 3, . . . ,m, we have ztk = min{gtk(τk), zt,k−1}. For a given t, with all zt1, zt2, . . . , ztm

computed in O(m) time, we have

ft(τt1, τt2, . . . , τtm) =

m
∑

k=1

Dtkztk.

The number of combinations of t, τt1, τt2, . . . , τtm is O(Tm+1). For each combination

of t, τt1, τt2, . . . , τtm, obtaining the value of ft(τt1, τt2, . . . , τtm) requires O(m) time. Hence,

after predetermining the values of gtj(τ ), all of the values of ft(τt1, τt2, . . . , τtm) can be

obtained in O(mTm+1) time.

With an argument similar to that for computing st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm)

in the Section 2, we have

st(τt1, τt2, . . . , τtm) =
∑

`∈{k|τtk=t; k=1,...,m}

Kt`,

for t = 1, 2, . . . , T and 1 ≤ τtj ≤ t (j = 1, 2, . . . ,m). Therefore, all of the values of

st(τt1, τt2, . . . , τtm) can also be determined in O(mTm+1) time.

We see now that predetermining all of the values of ft(τt1, τt2, . . . , τtm) and

st(τt1, τt2, . . . , τtm) requires O(mTm+1) time. The number of combinations of

t, τt1, τt2, . . . , τtm is O(Tm+1). For each combination, evaluating the minimization on the

right hand side of equation (2) takes O(2m) time. Hence, the overall complexity of this

algorithm is O(2mTm+1). This implies that when m is fixed, the running time of our

algorithm is O(Tm+1).
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4. Heuristic Method and Computational Experiments

In this section, we develop a heuristic for SWCP and perform a numerical study,

in which its effectiveness is tested and a sensitivity analysis of the model parameters is

provided. In addition, we test the efficiency of our DP algorithm developed earlier. Since

SWOP is a special case of SWCP, the same heuristic can be applied to solve SWOP.

Therefore, for simplicity, our numerical study is performed only on SWCP.

Our heuristic is an extension of the well known Silver–Meal heuristic (Silver and Meal

1973). In this heuristic, we first rearrange the nodes {vtj | t = 1, 2, . . . , T ; j = 1, 2, . . . ,m}

of network G into a one-dimensional array {ṽ(n) | n = 1, 2, . . . ,mT} such that vtj =

ṽ((j−1)T + t). In other words, using the drawing depicted in Figure 1, the nodes in

the first row of network G are placed in front of the nodes in the second row, which are

placed in front of the nodes in the third row, and so on. At each node ṽ(n), a set of four

elements {S(n), U(n), C(n), N(n)} is stored. Element S(n) is the “setup node” of ṽ(n),

which is the node where a setup is made to fulfill the demand of the associated product j

at ṽ(n). Element U(n) is the total variable cost (including production, inventory holding,

and conversion costs) of satisfying one unit of demand at ṽ(n) from its setup node S(n).

Element C(n) is the total cost (including setup and variable costs) of satisfying the demands

at ṽ(n), the predecessor of ṽ(n), the predecessor of the predecessor of ṽ(n), etc., from the

setup node S(n). Element N(n) is the number of nodes along the path from the setup

node S(n) to node ṽ(n). Thus, C(n)/N(n) is a counterpart of the quantity that represents

the average cost per period from the latest setup node up to node ṽ(n) in the Silver–Meal

heuristic in the case of a single product. The heuristic then proceeds to sequentially assign

values to {S(n), U(n), C(n), N(n)} for n = 1, 2, . . . ,mT in the following way. In contrast

to the single product case, the incoming flow to node ṽ(n) = ṽ((j−1)T + t) can emanate

from node ṽ((j−1)T + t−1) (when t > 1) or nodes ṽ(t), ṽ(T+t), ṽ(2T+t), . . . , ṽ((j−2)T+t).

Of these nodes, it is natural to select the one (denoted by ṽ(n′)) with the minimum total

variable cost of satisfying one unit of demand at node ṽ(n). Then similar to the Silver–
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Meal heuristic, a decision on S(n) is made at node ṽ(n) by comparing C(n′)/N(n′) with

[C(n′) + U(n)D(n)]/[N(n′) + 1], where D(n) is the demand at ṽ(n).

Define φ(n) as the set of all possible immediate predecessors of ṽ(n) in network G

(for example, φ(2) = {1} and φ(T + 2) = {T +1, 2}). Denote K(n) and p(n) as the setup

cost and unit production cost, respectively, at ṽ(n). Define η(n, n′) as the unit cost from

ṽ(n) to ṽ(n′), where ṽ(n) is an immediate predecessor of ṽ(n′) in network G (for example,

η(1, 2) = h11 and η(1, T +1) = c112). A formal description of this “extended Silver–Meal

heuristic” is given below.

Heuristic H for SWCP:

Step 1: (Initialization.) Set S(1) = ṽ(1), U(1) = p(1), C(1) = K(1) + p(1)D(1), and

N(1) = 1.

Step 2: For n = 2, 3, . . . ,mT , set n′ ← arg minx∈φ(n){U(x) + η(x, n)}, i.e., ṽ(n′) is the

immediate predecessor of ṽ(n) with the minimum variable cost of satisfying one unit of

demand at node ṽ(n). If C(n′)/N(n′) > [C(n′)+ (U(n′)+ η(n′, n))D(n)]/[N(n′)+ 1],

then let node ṽ(n) share the same setup as node ṽ(n′), that is, set S(n) = S(n′),

U(n) = U(n′)+η(n′, n), C(n) = C(n′)+U(n)D(n), and N(n) = N(n′)+1. Otherwise,

create a new setup at node ṽ(n), that is, set S(n) = ṽ(n), U(n) = p(n), C(n) =

K(n) + p(n)D(n), and N(n) = 1.

Step 3: (Computing the total cost.) Let Φ be the set of setup nodes. Thus, Φ = {S(n) |

n = 1, 2, . . . ,mT}. Then, the total cost = (total setup cost) + (total variable cost) =
∑

ṽ(n)∈Φ K(n) +
∑mT

n=1 U(n)D(n).

It is easy to check that the time complexity of Heuristic H is O(m2T ). Next, we

discuss the parameter setting of the computational study and present the numerical re-

sults to demonstrate the effectiveness of Heuristic H. In this study, we also compute the

performance of the Wagner–Whitin algorithm (Wagner and Whitin 1958) when applied to

the m products independently without considering product substitution. Let ZH denote

the total cost of the solution generated by Heuristic H. Let ZW denote the total cost of
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the solution generated by the Wagner–Whitin algorithm when applied to the m products

independently. Let Z∗ denote the total cost of the optimal solution obtained by the DP

algorithm developed in Section 2. Let RH = (ZH − Z∗)/Z∗ × 100% be the relative error

of the solution generated by Heuristic H. Let RW = (ZW −Z∗)/Z∗× 100% be the relative

error of the solution if product substitution is ignored.

The cost parameters include the setup cost Ktj , production cost ptj , holding cost htj ,

and conversion cost ctjk, where 1 ≤ t ≤ T and 1 ≤ j < k ≤ m. Another parameter is the

demand Dtj . The variability of data can be categorized into two types: The variability of

each product over the time horizon and the variability across different products. We make

a few assumptions on the parameters Ktj and htj . First, we assume that the holding cost

is proportional to the production cost (this assumption is realistic when the holding cost

is proportional to the monetary investment). We set htj = λptj for all t and j. We call

λ the “holding cost factor.” Second, we set Ktj = K̄j , for all t = 1, 2, . . . , T , that is, the

setup cost is stationary. The setup cost is chosen in such a way that an EOQ order cycle

of length 2 is obtained, that is,
√

2K̄j/h̄jD̄j = 2, or equivalently, K̄j = 2h̄jD̄j , where h̄j

and D̄j are the average holding cost rate and the average demand over the time horizon

for product j, respectively. Third, the conversion cost ctjk consists of the differential of the

product costs, max{ptk−ptj , 0}, and a “repackaging fee” of µptj . We call µ the “conversion

cost factor.” Thus, based on the above assumptions, m, T , λ, µ, ptj , and Dtj determine

all of the input parameters of our computational study.

The computational experiments are carried out in two main parts. The first part is

to test the effectiveness of Heuristic H and to show the stability of the results with respect

to m and T . For these purposes, we let αtime, αprdt, βtime, and βprdt be random values

selected from {0, 0.1, 0.2}, λ be a random value selected from {0.25, 0.5, 1}, and µ be a

random value selected from {0, 0.1, 0.2}. Then, for j = 1, 2, . . . ,m, we generate a value for

D̄j that is normally distributed with a mean of 1 and a standard deviation αprdt (we set

D̄j = 0 if the value generated is negative). Similarly, for j = 1, 2, . . . ,m, we generate a
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value for p̄j that is normally distributed with a mean of 1 and a standard deviation βprdt.

Then, for t = 1, 2, . . . , T , we generate a value for ptj that is normally distributed with

mean p̄j and standard deviation βtimep̄j , and we generate a value for Dtj that is normally

distributed with mean D̄j and standard deviation αtimeD̄j . Thus, αtime and αprdt represent

the demand variability over the time horizon and across different products, respectively,

while βtime and βprdt represent the production cost variability over the time horizon and

across different products, respectively. We randomly select 30 different sets of values for

(αtime, βtime, αprdt, βprdt, λ, µ). For each of them, we repeat the generation of ptj and Dtj

ten times. Thus, we test 300 instances for each pair of (m,T ). We compute the average

values of RH and RW over all of these 300 instances for the cases of (m = 2, T = 10),

(m = 2, T = 20), (m = 2, T = 40), (m = 2, T = 80), (m = 3, T = 10), (m = 3, T = 20), and

(m=3, T =40) using a 3 GHz processor with 1 GB of RAM. Note that in many real world

applications, the number of products that are hierarchically substitutable is quite small.

Thus, in this computational study, we focus on test instances with two and three products.

The results are summarized in Table 1, from which we observe that RH is quite stable

with respect to both m and T , although we do observe a small trend of increasing RH

with respect to m. In contrast, RW is stable with respect to T , but unstable with respect

to m. Hence, the benefit of product substitution increases significantly as the number of

products increases. This is plausible, since adding more products enables more possible

ways of substitution.

The computational time of the DP algorithm is reported in Table 2, from which we can

see that the DP is very efficient when m is small. As m and T increase, the memory space

requirement for storing the values of function Ft and the optimal policy grows substantially

and becomes a limitation of the DP algorithm.

The above data setting also enables us to perform a sensitivity analysis on the conver-

sion cost factor (µ), the holding cost factor (λ), the variability of demand (αtime, αprdt),

and the variability of cost parameters (βtime, βprdt). In this part of the experiments, we re-
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strict the experiments to the case of m = 2 and T = 10. Note that from the first part, this

restriction has little effect on the results for RH , but that RW deteriorates when m becomes

large. In order to investigate the effect of the conversion cost factor µ, for each value of µ we

let λ = 0.25, 0.5, 1 and αtime, αprdt, βtime, βprdt = 0, 0.1, 0.2. Thus, there are 243 sets of val-

ues of (λ, αtime, βtime, αprdt, βprdt) for each µ. For each set of (λ, αtime, βtime, αprdt, βprdt),

we generate the production cost and demand data using the method in the first part,

which is repeated ten times. Thus, for each µ, a total of 243 × 10 = 2430 instances are

computed, and the average values of RH and RW are summarized in Table 3. Similarly,

the effects of the holding cost factor and the variability of the cost and demand parameters

are summarized in Tables 4–8.

From Tables 3–8, we have the following observations: (1) As the conversion cost

factor increases (that is, as conversion gets more expensive), RW decreases significantly,

while there is little effect on RH . (2) As the holding cost factor decreases, RW decreases

significantly, while the effect on RH is less significant. (3) RH increases as the variability

of either the cost or demand parameter increases, but those parameters have little impact

on RW . The first observation coincides with the intuition that small conversion costs lead

to significant potential cost savings if either the optimal DP solution or Heuristic H is

used, compared to the solution obtained by simply ignoring the possibility of substitution.

The second observation can be explained by the fact that product substitution yields

savings mainly on part of the holding cost and setup cost. As λ decreases, from our data

setting, both the holding and setup costs become less important than the production cost.

This indicates that the benefit of product substitution diminishes as the production cost

becomes the dominant cost component. The third observation points out a limitation of

the use of Heuristic H. Namely, when the data are highly volatile, Heuristic H may not

be a good choice. This is consistent with the fact that the Silver–Meal heuristic is mainly

designed for stationary cost factors and is expected to perform poorly with rapid cost

changes (see p. 91 of Zipkin 2000). In conclusion, the numerical results suggest that our
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DP algorithm performs efficiently when the number of products is small, while Heuristic H

is a good choice when the data are less volatile. They also indicate that it can be quite

costly to ignore the effect of substitution, particularly when the conversion costs are small.

5. Conclusions

We have studied two dynamic lot size problems with one-way product substitution.

Both problems are NP-hard in general. However, when the number of products is fixed,

the dynamic programming algorithms developed in Sections 2 and 3 solve the problems

in polynomial time. We remark that in many real world applications, the number of

products that are hierarchically substitutable is typically small compared to the length of

the planning horizon. Our models can be efficiently solved in these situations. When the

number of products is large and the cost parameters do not vary significantly over time,

the extended Silver–Meal heuristic provides a good approximate solution.

Recall that in SWCP, there are variable conversion costs, but there is no fixed cost

associated with the conversion of products. In fact, the DP algorithm presented in Sec-

tion 2 can be modified to handle fixed conversion costs by extending the state space.

Denote Btjk as the fixed cost of converting product Pj to product Pk in period t. We

denote SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm; γt1, γt2, . . . , γtm) (where πtj ≤ γtj ≤ j)

as a restricted version of SWCP that satisfies the same conditions (i)–(iii) as those of

SWCPt(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm), with the following additional condition:

(iv) For j = 1, 2, . . . ,m, if γtj < j then a conversion from Pγtj
to Pj takes place in period

t, otherwise (i.e., γtj = j) the demand of Pj in period t is satisfied by either the

inventory carried from period t− 1 or by the production that takes place in period t.

This restricted problem can be solved via a similar recursion as equation (1), while the
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total fixed conversion and production setup cost incurred in period t is given as

st(τt1, τt2, . . . , τtm;πt1, πt2, . . . , πtm; γt1, γt2, . . . , γtm)

=
∑

π∈{πtk |τtk=t; k=1,...,m}

Ktπ +
∑

k=1,...,m s.t. γtk<k

Btγtkk.

The computational complexity of this extended DP algorithm is O
(

(m + 1)!(m!)2nm+1
)

.

When the number of products m is fixed, the running time of this algorithm is the same

as that presented in Section 2.

We conclude the paper by offering a few possible future research directions. First,

our models can be extended to handle additional constraints that arise in real world ap-

plications, such as finite product life and limited number of conversions as discussed in

Swaminathan and Kucukyavuz (2001), as well as capacity restrictions in production and

conversion. Second, the cost functions of our models can be extended to general concave

cost functions. However, our dynamic programs cannot be used to solve problems with

such a general cost structure. The development of efficient algorithms for solving SWCP

and SWOP with general concave costs is an interesting future research direction. Third,

our models have assumed that all cost parameters are time dependent. One interesting

question for future research is to investigate whether SWCP and SWOP can be solved

more efficiently if some cost parameters are time independent. Fourth, one could study a

multi-product DLS problem with one-way substitution for perishable products. This could

be an extension of the model studied by Hsu (2000). Finally, it is desirable to study the

multi-product DLS problem with substitution in both directions between products.

Appendix

Proof of Theorems 1 and 2: Recall that SWOP is a special case of SWCP and that the

transformation from SWOP to SWCP can be done in polynomial time. Hence, it suffices

to prove the strongly NP-hardness of SWOP. We transform the Exact Cover by 3-Sets
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(X3C) problem to the decision version of SWOP. Given a set A = {a1, a2, . . . , a3q} and a

collection C = {A1, A2, . . . , Ar} of 3-element subsets of A, the X3C problem asks whether

there exists a subcollection C ′ ⊆ C such that every element of A occurs in exactly one

member of C ′. The X3C problem is known to be NP-hard in the strong sense (Garey and

Johnson 1979).

Given an arbitrary instance of X3C, we construct a corresponding instance of the

decision version of SWOP as follows: Let m = r + 1 and T = 6q. Denote Ar+1 = ∅. Let

ptj = 0 (t = 1, 2, . . . , T ; j = 1, 2, . . . ,m);

Dtj =

{

1, if t is even and j = m,
0, otherwise,

(t = 1, 2, . . . , T ; j = 1, 2, . . . ,m);

Ktj =

{

1, if t = 1 and 1 ≤ j ≤ m− 1,
+∞, otherwise,

(t = 1, 2, . . . , T ; j = 1, 2, . . . ,m);

htj =

{

0, if t is odd and a(t+1)/2 ∈ Aj ,
2M, if t is even and at/2 ∈ Aj ,
M, otherwise,

(t = 1, 2, . . . , T−1; j = 1, 2, . . . ,m);

threshold, L = 3q(3q − 1)M + q;

where M is any integer greater than q. Note that the holding costs are defined in such a

way that if one unit of product is held from period 2t−1 until period 2t+1, then the cost

of holding must be 2M , for t = 1, 2, . . . , 3q − 1. Obviously, the above construction can be

done in polynomial time. We will show that there exists C ′ ⊆ C such that every element

of A occurs in exactly one member of C ′ if and only if there exists a solution to SWOP

with a total cost of no more than the threshold value L.

Suppose there exists C ′ ⊆ C such that every element of A occurs in exactly one

member of C ′. For each Aj ∈ C ′, let Aj = {a`1, a`2 , a`3}, where `1 < `2 < `3. Then for

t = 1, 2, . . . , T and j, k = 1, 2, . . . ,m, we set

xtj =

{

3, if t = 1 and Aj ∈ C ′,
0, otherwise;

Itj =











3, if 1 ≤ t ≤ 2`1−1 and Aj ∈ C ′,
2, if 2`1 ≤ t ≤ 2`2−1 and Aj ∈ C ′,
1, if 2`2 ≤ t ≤ 2`3−1 and Aj ∈ C ′,
0, otherwise;
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ytjk =

{

1, if (t = 2`1 or t = 2`2 or t = 2`3) and Aj ∈ C ′ and k = m,
0, otherwise.

Note that in the above instance of SWOP, positive demands only appear in product Pm

and in time periods 2, 4, . . . , 6q. Since every element of A occurs in exactly one member

of C ′, for each positive demand D2k,m (k = 1, 2, . . . , 3q), there exists Aj ∈ C ′ such that

ak ∈ Aj . Thus, in the constructed solution, demand D2k,m will be satisfied by product Pj ,

which is produced in period 1, held until period 2k, and used to substitute Pm in period

2k. We note that in the constructed solution, the holding cost of satisfying the demand

D2k,m is equal to 2(k− 1)M , for k = 1, 2, . . . , 3q. Hence, the total holding cost is equal to
∑3q

k=1 2(k − 1)M = 3q(3q − 1)M . The total setup cost is equal to |C ′| = q, and the total

production cost is zero. Thus, the total cost of this constructed solution is 3q(3q−1)M +q,

which is exactly L.

Conversely, if there exists a solution to SWOP with a total cost no more than L, then

in this solution the production can only take place in period 1 to produce P1, P2, . . . , Pm−1.

Let

J = {j | x1j > 0; j = 1, 2, . . . ,m−1}.

Thus, J is the index set of j where the production of Pj takes place in period 1. We define

C ′ = {Aj | j ∈ J}.

Note that for k = 1, 2, . . . , 3q, the holding cost of carrying one unit of any product from

period 1 through period 2k− 1 is 2(k − 1)M . Hence, in any feasible solution with a

total cost of no more than L, the holding cost needed to satisfy demand D2k,m is at

least 2(k − 1)M . Therefore, the total holding cost in any feasible solution is at least

∑3q
k=1 2(k− 1)M = 3q(3q − 1)M . This implies that the total setup cost in that solution is

no more than q, or equivalently, |C ′| ≤ q. Meanwhile, for every ak ∈ A (k = 1, 2, . . . , 3q),

there exists Aj ∈ C ′ such that ak ∈ Aj . This is because if ak did not belong to any

member of C ′, then in the solution to SWOP, the holding cost needed to satisfy demand
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D2k,m would be at least 2(k − 1)M + M , and the total holding cost would be at least

3q(3q − 1)M + M > L, which is a contradiction.

This completes the proof of Theorems 1 and 2.
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Figure 1.  Network G for problem SWCP. 
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Figure 2.  Network diagram showing that SWOP is a special case of SWCP. 
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Table 1. Stability results 
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Table 2. CPU time (in sec.) of the DP algorithm for SWCP 
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Table 3. Sensitivity analysis of the conversion rate 
 0=µ  01.0=µ  02.0=µ  
HR  7.4% 7.2% 7.1% 
WR  17.3% 14.0% 10.8% 

 
 

Table 4. Sensitivity analysis of the holding cost rate 
 25.0=λ  5.0=λ  1=λ  
HR  8.1% 7.2% 6.5% 
WR  5.5% 13.0% 23.6% 

 
 

Table 5. Sensitivity analysis of the demand variability over time 
 0time =α  1.0time =α  2.0time =α  
HR  6.2% 7.4% 8.5% 
WR  13.8% 14.1% 14.2% 

 
 

Table 6. Sensitivity analysis of the production cost variability over time 
 0time =β  1.0time =β  2.0time =β  
HR  4.4% 6.5% 11.0% 
WR  13.8% 14.3% 13.8% 

 



Table 7. Sensitivity analysis of the demand variability across products 
 0prdt =α  1.0prdt =α  2.0prdt =α  
HR  6.8% 7.2% 8.1% 
WR  13.9% 14.1% 14.1% 

 
 

Table 8. Sensitivity analysis of the production cost variability across products 
 0prdt =β  1.0prdt =β  2.0prdt =β  
HR  6.2% 6.8% 9.0% 
WR  14.4% 13.9% 13.6% 

 




