6 research outputs found

    Kvasir-Capsule, a video capsule endoscopy dataset

    Get PDF
    Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE. They also show great potential for improvements to achieve even better results. Also, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around findings from 14 different classes. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order to reach true potential of VCE technology

    Classification of Anomalies in Gastrointestinal Tract Using Deep Learning

    Get PDF
    Automatic detection of diseases and anatomical landmarks in medical images by the use of computers is important and considered a challenging process that could help medical diagnosis and reduce the cost and time of investigational procedures and refine health care systems all over the world. Recently, gastrointestinal (GI) tract disease diagnosis through endoscopic image classification is an active research area in the biomedical field. Several GI tract disease classification methods based on image processing and machine learning techniques have been proposed by diverse research groups in the recent past. However, yet effective and comprehensive deep ensemble neural network-based classification model with high accuracy classification results is not available in the literature. In this thesis, we review ways and mechanisms to use deep learning techniques to research on multi-disease computer-aided detection about gastrointestinal and identify these images. We re-trained five state-of-the-art neural network architectures, VGG16, ResNet, MobileNet, Inception-v3, and Xception on the Kvasir dataset to classify eight categories that include an anatomical landmark (pylorus, z-line, cecum), a diseased state (esophagitis, ulcerative colitis, polyps), or a medical procedure (dyed lifted polyps, dyed resection margins) in the Gastrointestinal Tract. Our models have showed results with a promising accuracy which is a remarkable performance with respect to the state-of-the-art approaches. The resulting accuracies achieved using VGG, ResNet, MobileNet, Inception-v3, and Xception were 98.3%, 92.3%, 97.6%, 90% and 98.2%, respectively. As it appears, the most accurate result has been achieved when retraining VGG16 and Xception neural networks with accuracy reache to 98% due to its high performance on training on ImageNet dataset and internal structure that support classification problems
    corecore