149 research outputs found

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions

    Full text link
    The paper describes the refinement algorithm for the Calculus of (Co)Inductive Constructions (CIC) implemented in the interactive theorem prover Matita. The refinement algorithm is in charge of giving a meaning to the terms, types and proof terms directly written by the user or generated by using tactics, decision procedures or general automation. The terms are written in an "external syntax" meant to be user friendly that allows omission of information, untyped binders and a certain liberal use of user defined sub-typing. The refiner modifies the terms to obtain related well typed terms in the internal syntax understood by the kernel of the ITP. In particular, it acts as a type inference algorithm when all the binders are untyped. The proposed algorithm is bi-directional: given a term in external syntax and a type expected for the term, it propagates as much typing information as possible towards the leaves of the term. Traditional mono-directional algorithms, instead, proceed in a bottom-up way by inferring the type of a sub-term and comparing (unifying) it with the type expected by its context only at the end. We propose some novel bi-directional rules for CIC that are particularly effective. Among the benefits of bi-directionality we have better error message reporting and better inference of dependent types. Moreover, thanks to bi-directionality, the coercion system for sub-typing is more effective and type inference generates simpler unification problems that are more likely to be solved by the inherently incomplete higher order unification algorithms implemented. Finally we introduce in the external syntax the notion of vector of placeholders that enables to omit at once an arbitrary number of arguments. Vectors of placeholders allow a trivial implementation of implicit arguments and greatly simplify the implementation of primitive and simple tactics

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    Goal Translation for a Hammer for Coq (Extended Abstract)

    Full text link
    Hammers are tools that provide general purpose automation for formal proof assistants. Despite the gaining popularity of the more advanced versions of type theory, there are no hammers for such systems. We present an extension of the various hammer components to type theory: (i) a translation of a significant part of the Coq logic into the format of automated proof systems; (ii) a proof reconstruction mechanism based on a Ben-Yelles-type algorithm combined with limited rewriting, congruence closure and a first-order generalization of the left rules of Dyckhoff's system LJT.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Proof in Context -- Web Editing with Rich, Modeless Contextual Feedback

    Full text link
    The Agora system is a prototypical Wiki for formal mathematics: a web-based system for collaborating on formal mathematics, intended to support informal documentation of formal developments. This system requires a reusable proof editor component, both for collaborative editing of documents, and for embedding in the resulting documents. This paper describes the design of Agora's asynchronous editor, that is generic enough to support different tools working on editor content and providing contextual information, with interactive theorem proverss being a special, but important, case described in detail for the Coq theorem prover.Comment: In Proceedings UITP 2012, arXiv:1307.152

    Matita Tutorial

    Get PDF
    This tutorial provides a pragmatic introduction to the main functionalities of the Matita interactive theorem prover, offering a guided tour through a set of not so trivial examples in the field of software specification and verification.\u

    A Synthesis of the Procedural and Declarative Styles of Interactive Theorem Proving

    Get PDF
    We propose a synthesis of the two proof styles of interactive theorem proving: the procedural style (where proofs are scripts of commands, like in Coq) and the declarative style (where proofs are texts in a controlled natural language, like in Isabelle/Isar). Our approach combines the advantages of the declarative style - the possibility to write formal proofs like normal mathematical text - and the procedural style - strong automation and help with shaping the proofs, including determining the statements of intermediate steps. Our approach is new, and differs significantly from the ways in which the procedural and declarative proof styles have been combined before in the Isabelle, Ssreflect and Matita systems. Our approach is generic and can be implemented on top of any procedural interactive theorem prover, regardless of its architecture and logical foundations. To show the viability of our proposed approach, we fully implemented it as a proof interface called miz3, on top of the HOL Light interactive theorem prover. The declarative language that this interface uses is a slight variant of the language of the Mizar system, and can be used for any interactive theorem prover regardless of its logical foundations. The miz3 interface allows easy access to the full set of tactics and formal libraries of HOL Light, and as such has "industrial strength". Our approach gives a way to automatically convert any procedural proof to a declarative counterpart, where the converted proof is similar in size to the original. As all declarative systems have essentially the same proof language, this gives a straightforward way to port proofs between interactive theorem provers

    Sharing a Library between Proof Assistants: Reaching out to the HOL Family

    Get PDF
    We observe today a large diversity of proof systems. This diversity has the negative consequence that a lot of theorems are proved many times. Unlike programming languages, it is difficult for these systems to co-operate because they do not implement the same logic. Logical frameworks are a class of theorem provers that overcome this issue by their capacity of implementing various logics. In this work, we study the STTforall logic, an extension of Simple Type Theory that has been encoded in the logical framework Dedukti. We present a translation from this logic to OpenTheory, a proof system and interoperability tool between provers of the HOL family. We have used this translation to export an arithmetic library containing Fermat's little theorem to OpenTheory and to two other proof systems that are Coq and Matita.Comment: In Proceedings LFMTP 2018, arXiv:1807.0135
    • 

    corecore