19,901 research outputs found

    Air pollution modelling using a graphics processing unit with CUDA

    Get PDF
    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.Comment: 5 figure

    An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources

    Full text link
    A method is developed for estimating the emission rates of contaminants into the atmosphere from multiple point sources using measurements of particulate material deposited at ground level. The approach is based on a Gaussian plume type solution for the advection-diffusion equation with ground-level deposition and given emission sources. This solution to the forward problem is incorporated into an inverse algorithm for estimating the emission rates by means of a linear least squares approach. The results are validated using measured deposition and meteorological data from a large lead-zinc smelting operation in Trail, British Columbia. The algorithm is demonstrated to be robust and capable of generating reasonably accurate estimates of total contaminant emissions over the relatively short distances of interest in this study

    A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids: classical tests

    Get PDF
    In an effort to study the applicability of adaptive mesh refinement (AMR) techniques to atmospheric models an interpolation-based spectral element shallow water model on a cubed-sphere grid is compared to a block-structured finite volume method in latitude-longitude geometry. Both models utilize a non-conforming adaptation approach which doubles the resolution at fine-coarse mesh interfaces. The underlying AMR libraries are quad-tree based and ensure that neighboring regions can only differ by one refinement level. The models are compared via selected test cases from a standard test suite for the shallow water equations. They include the advection of a cosine bell, a steady-state geostrophic flow, a flow over an idealized mountain and a Rossby-Haurwitz wave. Both static and dynamics adaptations are evaluated which reveal the strengths and weaknesses of the AMR techniques. Overall, the AMR simulations show that both models successfully place static and dynamic adaptations in local regions without requiring a fine grid in the global domain. The adaptive grids reliably track features of interests without visible distortions or noise at mesh interfaces. Simple threshold adaptation criteria for the geopotential height and the relative vorticity are assessed.Comment: 25 pages, 11 figures, preprin
    • …
    corecore