8 research outputs found

    Submodular Rank Aggregation on Score-based Permutations for Distributed Automatic Speech Recognition

    Full text link
    Distributed automatic speech recognition (ASR) requires to aggregate outputs of distributed deep neural network (DNN)-based models. This work studies the use of submodular functions to design a rank aggregation on score-based permutations, which can be used for distributed ASR systems in both supervised and unsupervised modes. Specifically, we compose an aggregation rank function based on the Lovasz Bregman divergence for setting up linear structured convex and nested structured concave functions. The algorithm is based on stochastic gradient descent (SGD) and can obtain well-trained aggregation models. Our experiments on the distributed ASR system show that the submodular rank aggregation can obtain higher speech recognition accuracy than traditional aggregation methods like Adaboost. Code is available online~\footnote{https://github.com/uwjunqi/Subrank}.Comment: Accepted to ICASSP 2020. Please download the pdf to view Figure 1. arXiv admin note: substantial text overlap with arXiv:1707.0116

    The Lov\'asz Hinge: A Novel Convex Surrogate for Submodular Losses

    Get PDF
    Learning with non-modular losses is an important problem when sets of predictions are made simultaneously. The main tools for constructing convex surrogate loss functions for set prediction are margin rescaling and slack rescaling. In this work, we show that these strategies lead to tight convex surrogates iff the underlying loss function is increasing in the number of incorrect predictions. However, gradient or cutting-plane computation for these functions is NP-hard for non-supermodular loss functions. We propose instead a novel surrogate loss function for submodular losses, the Lov\'asz hinge, which leads to O(p log p) complexity with O(p) oracle accesses to the loss function to compute a gradient or cutting-plane. We prove that the Lov\'asz hinge is convex and yields an extension. As a result, we have developed the first tractable convex surrogates in the literature for submodular losses. We demonstrate the utility of this novel convex surrogate through several set prediction tasks, including on the PASCAL VOC and Microsoft COCO datasets

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore