16,997 research outputs found

    Inferential Expressivism and the Negation Problem

    Get PDF
    We develop a novel solution to the negation version of the Frege-Geach problem by taking up recent insights from the bilateral programme in logic. Bilateralists derive the meaning of negation from a primitive *B-type* inconsistency involving the attitudes of assent and dissent. Some may demand an explanation of this inconsistency in simpler terms, but we argue that bilateralism’s assumptions are no less explanatory than those of *A-type* semantics that only require a single primitive attitude, but must stipulate inconsistency elsewhere. Based on these insights, we develop a version of B-type expressivism called *inferential expressivism*. This is a novel semantic framework that characterises meanings by inferential roles that define which *attitudes* one can *infer* from the use of terms. We apply this framework to normative vocabulary, thereby solving the Frege-Geach problem generally and comprehensively. Our account moreover includes a semantics for epistemic modals, thereby also explaining normative terms under epistemic modals

    A modal logic of information

    Get PDF
    We consider modal epistemic and doxastic logics as intuitively inadequate logics of information, and we outline a modal system of the operator being informed that which avoids inconsistency with our intuitive concept of information. The system has modal structure of the normal modal logic K4, and is sound and complete on the class of all transitive frames. We compare this logic with Floridi’s KTB information logic, and we consider a possibility of extending our system to a dynamic logic

    Deriving Inverse Operators for Modal Logic

    Get PDF
    International audienceSpatial constraint systems are algebraic structures from concurrent constraint programming to specify spatial and epistemic behavior in multi-agent systems. We shall use spatial constraint systems to give an abstract characterization of the notion of normality in modal logic and to derive right inverse/reverse operators for modal languages. In particular, we shall identify the weakest condition for the existence of right inverses and show that the abstract notion of normality corresponds to the preservation of finite suprema. We shall apply our results to existing modal languages such as the weakest normal modal logic, Hennessy-Milner logic, and linear-time temporal logic. We shall discuss our results in the context of modal concepts such as bisimilarity and inconsistency invariance

    On formal aspects of the epistemic approach to paraconsistency

    Get PDF
    This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for both BLE and LET J . The meanings of the connectives of BLE and LET J , from the point of view of preservation of evidence, is explained with the aid of an inferential semantics. A formalization of the notion of evidence for BLE as proposed by M. Fitting is also reviewed here. As a novel result, the paper shows that LET J is semantically characterized through the so-called Fidel structures. Some opportunities for further research are also discussed

    AGM-Like Paraconsistent Belief Change

    Get PDF
    Two systems of belief change based on paraconsistent logics are introduced in this article by means of AGM-like postulates. The first one, AGMp, is defined over any paraconsistent logic which extends classical logic such that the law of excluded middle holds w.r.t. the paraconsistent negation. The second one, AGMo , is specifically designed for paraconsistent logics known as Logics of Formal Inconsistency (LFIs), which have a formal consistency operator that allows to recover all the classical inferences. Besides the three usual operations over belief sets, namely expansion, contraction and revision (which is obtained from contraction by the Levi identity), the underlying paraconsistent logic allows us to define additional operations involving (non-explosive) contradictions. Thus, it is defined external revision (which is obtained from contraction by the reverse Levi identity), consolidation and semi-revision, all of them over belief sets. It is worth noting that the latter operations, introduced by S. Hansson, involve the temporary acceptance of contradictory beliefs, and so they were originally defined only for belief bases. Unlike to previous proposals in the literature, only defined for specific paraconsistent logics, the present approach can be applied to a general class of paraconsistent logics which are supraclassical, thus preserving the spirit of AGM. Moreover, representation theorems w.r.t. constructions based on selection functions are obtained for all the operations

    The Logic of Conditional Belief

    Get PDF
    The logic of indicative conditionals remains the topic of deep and intractable philosophical disagreement. I show that two influential epistemic norms—the Lockean theory of belief and the Ramsey test for conditional belief—are jointly sufficient to ground a powerful new argument for a particular conception of the logic of indicative conditionals. Specifically, the argument demonstrates, contrary to the received historical narrative, that there is a real sense in which Stalnaker’s semantics for the indicative did succeed in capturing the logic of the Ramseyan indicative conditional

    Cognitive context and arguments from ontologies for learning

    Get PDF
    The deployment of learning resources on the web by different experts has resulted in the accessibility of multiple viewpoints about the same topics. In this work we assume that learning resources are underpinned by ontologies. Different formalizations of domains may result from different contexts, different use of terminology, incomplete knowledge or conflicting knowledge. We define the notion of cognitive learning context which describes the cognitive context of an agent who refers to multiple and possibly inconsistent ontologies to determine the truth of a proposition. In particular we describe the cognitive states of ambiguity and inconsistency resulting from incomplete and conflicting ontologies respectively. Conflicts between ontologies can be identified through the derivation of conflicting arguments about a particular point of view. Arguments can be used to detect inconsistencies between ontologies. They can also be used in a dialogue between a human learner and a software tutor in order to enable the learner to justify her views and detect inconsistencies between her beliefs and the tutor’s own. Two types of arguments are discussed, namely: arguments inferred directly from taxonomic relations between concepts, and arguments about the necessary an

    A new epistemic model

    Get PDF
    Meier (2012) gave a "mathematical logic foundation" of the purely measurable universal type space (Heifetz and Samet, 1998). The mathematical logic foundation, however, discloses an inconsistency in the type space literature: a finitary language is used for the belief hierarchies and an infinitary language is used for the beliefs. In this paper we propose an epistemic model to fix the inconsistency above. We show that in this new model the universal knowledgebelief space exists, is complete and encompasses all belief hierarchies. Moreover, by examples we demonstrate that in this model the players can agree to disagree Aumann (1976)'s result does not hold, and Aumann and Brandenburger (1995)'s conditions are not sufficient for Nash equilibrium. However, we show that if we substitute selfevidence (Osborne and Rubinstein, 1994) for common knowledge, then we get at that both Aumann (1976)'s and Aumann and Brandenburger (1995)'s results hold
    corecore