3,143 research outputs found

    Abstraction as a basis for the computational interpretation of creative cross-modal metaphor

    Get PDF
    Various approaches to computational metaphor interpretation are based on pre-existing similarities between source and target domains and/or are based on metaphors already observed to be prevalent in the language. This paper addresses similarity-creating cross-modal metaphoric expressions. It is shown how the “abstract concept as object” (or reification) metaphor plays a central role in a large class of metaphoric extensions. The described approach depends on the imposition of abstract ontological components, which represent source concepts, onto target concepts. The challenge of such a system is to represent both denotative and connotative components which are extensible, together with a framework of general domains between which such extensions can conceivably occur. An existing ontology of this kind, consistent with some mathematic concepts and widely held linguistic notions, is outlined. It is suggested that the use of such an abstract representation system is well adapted to the interpretation of both conventional and unconventional metaphor that is similarity-creating

    EMBODIMENT IN SECOND LANGUAGE LEARNING AND TEACHING

    Get PDF
    This paper aims to elaborate the implementation of Embodiment as one of the concept of Cognitive Linguistics in second language learning and teaching. Cognitive Linguistics is simply pointed that language is all about meaning. It views the learner as a thinking being and an active processor of information. However, it is interesting as we found that mind and body are not separate entities. Involved in understanding what people say to us and what we read, Embodiment relates meanings directly to our physical experience; it emphasizes on the way cognition is shaped by the body and its sensorimotor interaction with the world. Furthermore, this paper is trying to show how the theoretical assumptions, basic units, and constructs used in Cognitive Linguistics offer a better understanding of the true nature of language and grammar, and how Embodiment may improve current second language teaching and learning methods

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse

    Natural language software registry (second edition)

    Get PDF

    CLiFF Notes: Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    One concern of the Computer Graphics Research Lab is in simulating human task behavior and understanding why the visualization of the appearance, capabilities and performance of humans is so challenging. Our research has produced a system, called Jack, for the definition, manipulation, animation and human factors analysis of simulated human figures. Jack permits the envisionment of human motion by interactive specification and simultaneous execution of multiple constraints, and is sensitive to such issues as body shape and size, linkage, and plausible motions. Enhanced control is provided by natural behaviors such as looking, reaching, balancing, lifting, stepping, walking, grasping, and so on. Although intended for highly interactive applications, Jack is a foundation for other research. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object around us, and yet the most structurally complex. Their everyday movements are amazingly fluid, yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language. Present technology lets us approach human appearance and motion through computer graphics modeling and three dimensional animation, but there is considerable distance to go before purely synthesized figures trick our senses. We seek to build computational models of human like figures which manifest animacy and convincing behavior. Towards this end, we: Create an interactive computer graphics human model; Endow it with reasonable biomechanical properties; Provide it with human like behaviors; Use this simulated figure as an agent to effect changes in its world; Describe and guide its tasks through natural language instructions. There are presently no perfect solutions to any of these problems; ultimately, however, we should be able to give our surrogate human directions that, in conjunction with suitable symbolic reasoning processes, make it appear to behave in a natural, appropriate, and intelligent fashion. Compromises will be essential, due to limits in computation, throughput of display hardware, and demands of real-time interaction, but our algorithms aim to balance the physical device constraints with carefully crafted models, general solutions, and thoughtful organization. The Jack software is built on Silicon Graphics Iris 4D workstations because those systems have 3-D graphics features that greatly aid the process of interacting with highly articulated figures such as the human body. Of course, graphics capabilities themselves do not make a usable system. Our research has therefore focused on software to make the manipulation of a simulated human figure easy for a rather specific user population: human factors design engineers or ergonomics analysts involved in visualizing and assessing human motor performance, fit, reach, view, and other physical tasks in a workplace environment. The software also happens to be quite usable by others, including graduate students and animators. The point, however, is that program design has tried to take into account a wide variety of physical problem oriented tasks, rather than just offer a computer graphics and animation tool for the already computer sophisticated or skilled animator. As an alternative to interactive specification, a simulation system allows a convenient temporal and spatial parallel programming language for behaviors. The Graphics Lab is working with the Natural Language Group to explore the possibility of using natural language instructions, such as those found in assembly or maintenance manuals, to drive the behavior of our animated human agents. (See the CLiFF note entry for the AnimNL group for details.) Even though Jack is under continual development, it has nonetheless already proved to be a substantial computational tool in analyzing human abilities in physical workplaces. It is being applied to actual problems involving space vehicle inhabitants, helicopter pilots, maintenance technicians, foot soldiers, and tractor drivers. This broad range of applications is precisely the target we intended to reach. The general capabilities embedded in Jack attempt to mirror certain aspects of human performance, rather than the specific requirements of the corresponding workplace. We view the Jack system as the basis of a virtual animated agent that can carry out tasks and instructions in a simulated 3D environment. While we have not yet fooled anyone into believing that the Jack figure is real , its behaviors are becoming more reasonable and its repertoire of actions more extensive. When interactive control becomes more labor intensive than natural language instructional control, we will have reached a significant milestone toward an intelligent agent

    Indra: A word embedding and semantic relatedness server

    Get PDF
    In recent years word embedding/distributional semantic models evolved to become a fundamental component in many natural language processing (NLP) architectures due to their ability of capturing and quantifying semantic associations at scale. Word embedding models can be used to satisfy recurrent tasks in NLP such as lexical and semantic generalisation in machine learning tasks, finding similar or related words and computing semantic relatedness of terms. However, building and consuming specific word embedding models require the setting of a large set of configurations, such as corpus-dependant parameters, distance measures as well as compositional models. Despite their increasing relevance as a component in NLP architectures, existing frameworks provide limited options in their ability to systematically build, parametrise, compare and evaluate different models. To answer this demand, this paper describes INDRA, a multi-lingual word embedding/distributional semantics framework which supports the creation, use and evaluation of word embedding models. In addition to the tool, INDRA also shares more than 65 pre-computed models in 14 languages
    corecore