34 research outputs found

    Improving the Tartarus problem as a benchmark in genetic programming

    Get PDF
    For empirical research on computer algorithms, it is essential to have a set of benchmark problems on which the relative performance of different methods and their applicability can be assessed. In the majority of computational research fields there are established sets of benchmark problems; however, the field of genetic programming lacks a similarly rigorously defined set of benchmarks. There is a strong interest within the genetic programming community to develop a suite of benchmarks. Following recent surveys [7], the desirable characteristics of a benchmark problem are now better defined. In this paper the Tartarus problem is proposed as a tunably difficult benchmark problem for use in Genetic Programming. The justification for this proposal is presented, together with guidance on its usage as a benchmark

    Tag-based modules in genetic programming

    Full text link
    In this paper we present a new technique for evolving mod-ular programs with genetic programming. The technique is based on the use of “tags ” that evolving programs may use to label and later to refer to code fragments. Tags may refer inexactly, permitting the labeling and use of code fragments to co-evolve in an incremental way. The technique can be implemented as a minor modification to an existing, general purpose genetic programming system, and it does not re-quire pre-specification of the module architecture of evolved programs. We demonstrate that tag-based modules readily evolve and that this allows problem solving effort to scale well with problem size. We also show that the tag-based module technique is effective even in complex, non-uniform problem environments for which previous techniques per-form poorly. We demonstrate the technique in the context of the stack-based genetic programming system PushGP, but we also briefly discuss ways in which it may be used with other kinds of genetic programming systems

    Multi-Robot Complete Coverage Using Directional Constraints

    Get PDF
    Complete coverage relies on a path planning algorithm that will move one or more robots, including the actuator, sensor, or body of the robot, over the entire environment. Complete coverage of an unknown environment is used in applications like automated vacuum cleaning, carpet cleaning, lawn mowing, chemical or radioactive spill detection and cleanup, and humanitarian de-mining. The environment is typically decomposed into smaller areas and then assigned to individual robots to cover. The robots typically use the Boustrophedon motion to cover the cells. The location and size of obstacles in the environment are unknown beforehand. An online algorithm using sensor-based coverage with unlimited communication is typically used to plan the path for the robots. For certain applications, like robotic lawn mowing, a pattern might be desirable over a random irregular pattern for the coverage operation. Assigning directional constraints to the cells can help achieve the desired pattern if the path planning part of the algorithm takes the directional constraints into account. The goal of this dissertation is to adapt the distributed coverage algorithm with unrestricted communication developed by Rekleitis et al. (2008) so that it can be used to solve the complete coverage problem with directional constraints in unknown environments while minimizing repeat coverage. It is a sensor-based approach that constructs a cellular decomposition while covering the unknown environment. The new algorithm takes directional constraints into account during the path planning phase. An implementation of the algorithm was evaluated in simulation software and the results from these experiments were compared against experiments conducted by Rekleitis et al. (2008) and with an implementation of their distributed coverage algorithm. The results of this study confirm that directional constraints can be added to the complete coverage algorithm using multiple robots without any significant impact on performance. The high-level goals of complete coverage were still achieved. The work was evenly distributed between the robots to reduce the time required to cover the cells

    CES-479 A Linear Estimation-of-Distribution GP System

    Get PDF
    We present N-gram GP, an estimation of distribution algorithm for the evolution of linear computer programs. The algorithm learns and samples the joint probability distribution of triplets of instructions (or 3-grams) at the same time as it is learning and sampling a program length distribution. We have tested N-gram GP on symbolic regressions problems where the target function is a polynomial of up to degree 12 and lawn-mower problems with lawn sizes of up to 12 ? 12. Results show that the algorithm is e?ective and scales better on these problems than either linear GP or simple stochastic hill-climbing

    Zooming in on Artificial Intelligence

    Get PDF
    corecore