
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Senior Thesis Projects, 1993-2002 College Scholars

1997

Zooming in on Artificial Intelligence Zooming in on Artificial Intelligence

Zachary Eyler-Walker

Follow this and additional works at: https://trace.tennessee.edu/utk_interstp2

Recommended Citation Recommended Citation
Eyler-Walker, Zachary, "Zooming in on Artificial Intelligence" (1997). Senior Thesis Projects, 1993-2002.
https://trace.tennessee.edu/utk_interstp2/11

This Project is brought to you for free and open access by the College Scholars at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Senior Thesis Projects, 1993-2002 by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_interstp2
https://trace.tennessee.edu/utk_intercsch
https://trace.tennessee.edu/utk_interstp2?utm_source=trace.tennessee.edu%2Futk_interstp2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Zooming in on Artificial Intelligence:
Investigations in Genetic Programming

Zachruy T. Eyler -Walker

College Scholars Project
University of Tennessee, Knoxville

zwalker@cs.utk.edu

December 8, 1997

1 Introduction

This proj ect is the culmination of my studies at the University of Tennessee as a

College Scholar in Cognitive Studies and Artificial Intelligence. The specifics of

the work here are most directly relevant to the latter half of the concentration

title, but the motivations are drawn from my program as a whole. Toward this

end I plan to demonstrate proficiency in the area of artifiCial intelligence, in both

some of the philosophy and in implementation and work with the 'model of

genetic programming.

This paper is reflective of my time as a College Scholar through its form as well

as its subject matter, in that it holds both a wide perspective and a more tightly

focused one. To help make this sensible I've tried to clearly delineate the turn

ing pOints in scope. The paper begins by cutting a wide swath through the his

tory of artificial intelligence as I justify my interest in nontraditional nlethods

(e.g., neural networks, genetic algorithms); there are a large number of possible

techniques aVailable to those interested in the field, but like others, I believe

there are good reasons for examining these in particular. I will then describe

genetic programming specifically in terms of regular genetic algorithms. Once I

have established a working foundation of the state of the field I will briefly dis

cuss some details of my implementation of a genetic programming module (the

source code forms Appendix B) before moving on to a discussion of some spe

Cific applications of the genetic programming package to various problems.

1.1 A Brief History of Artificial Intelligence (and Shortfalls of the Turing Test).

The idea of intelligent machines fascinates many. and people have made various

attempts to realize them since long before the advent of digital computers. Arti-

ficial intelligence as we currently understand it came into existence with Alan

Turing·s famous 1950 paper, "Computing Machinery and IntelligenGe," and the

Turing Test. Here he defines AI operationally in terms of the "imitation game,"

essentially a blind test where a questioner Uudge) attempts to guess which of

two "speakers"l is a real human and which a computer. Implicit in this defini-

tion are a number of points: the most important of these is an acceptance that it

is not possible to define intelligence in others in terms of some sort of internal

experience. since clearly that is closed to us as outsiders. We are grappling with

the "other minds" problem here, and while we can by our similar make-ups feel

comfortable with the prospect of other human intelligences, it is much more dif-

ficult to do so with other entities. Computers are about as physically and struc-

turally different from us as things can be. leaving us, it seems, little but

external behavior to make our judgment on. Ultimately the Turing Test wound

up tying us to a new set of problems even as it freed us from others that were

pressing at the time.

1. Actual! y, in the Turing test, all communication is held through written text only; all the judge sees is a
screen with the responses of the entities being questioned.

The idea of external behavior as a significator of internal awareness was sub

sumed into the common understanding of the problems of AI by researchers in

the field. On its surface, this seems reasonable or maybe even necessary-

what other way can we possibly have of attributing consciousness to another

thing -- and in fact. I believe the latter is at least partially true. Nevertheless,

through a seemingly innocuous misapplication the Turing Test is also linked to

one of the more detrimental paradigms the field of artificial intelligence has

known.

There are some obvious philosophical objections one might raise to the Turing

Test as a true test of intelligence. For example, it assumes that the intelligence

of the agent is comparable to human intelligence, when it maybe be possible to

be intelligent in nonhumanlike ways. A more concrete objection is Searle's

famous Chinese Room argument (Searle, 1980), which attempts to show that

the rules of digital computers can only ever simulate intellectual processes and

behaviors, and that mere simulation is not enough to bring about conscious

ness. Would a simulation of a tornado tear down a real house? Questions like

these have divided AI into two different definitions, Strong AI and Weak or Soft

AI. The former holds that it is possible to make genuinely aware artificial

agents, while the latter is concerned only with the prospect of making programs

that can behave passably intelligently.

While this sort of philosophical debate continues to rage,2 however, there are at

least as many difficulties on the practical side of the matter. Most researchers

would be happy to create a genuine example of either strong or weak AI -- if not

machines who think, at least machines that act as though they do. Before com-

ing back to the Turing Test and my conjecture that it is possible to view the fOOl-

ures of AI as stemming from it, let me give a brief history of the actual work that

has been done.

Artificial intelligence as a field seems to have come into its own Wi~ the ever

more accessible computing power available around the 1960s. By the end of

that decade we had several seemingly encouraging examples of solid steps in

the right direction. These include programs like Weizenbaum's ELIZA, a simu-

lated Rogelian psychiatrist, and some of the first powerful game playing pro-

grams, like Arthur Samuel's expert-level checkers software.

At this point, there was something of a reality check; Weizenbaum himself char-

acterized ELIZA as a cariacture of a real psychiatrist, and of course it would

never hold up under any real scrutiny. In effect, it was a domain-specific trick.

The game players were also seen to be a dead end -- there is no way they could

ever solve any problems other than the playing the games they were designed

for. Again, they were so inflexible as to be little more than toys.

2. See, for example, Shadows of the Mind (penrose, 1994), where Penrose presents an argument against any
artificial intelligence, strong or weak, from Godel's Theorem. Far from being a definitive refutation of
AI, this has sparked numerous objections from all over the cognitive, mathematical, and computer sci
ences. A number of these, along with a reply from Penrose, are available at
http://psyche.cs.monash.edu.au/psyche-index-v2.html#som

To answer these problems. Minsky and others began working with the idea of

"micro-worlds." Computers of that time. just as those of today. could never

hope to represent all the information needed to solve the problems of proficiency

in the huge real world. but at the same time they needed to work in domains

with some generality. Micro-worlds were an attempt to bridge this gap, by being

pared-down but still rich sub-sets of the real world. The best known example of

a micro-world and its associated program is Winograd's blocks world and

SHRDLU. Here the micro-world consists of different colored blocks _of varying

shapes and sizes. say. small and large blue cubes, red cubes, green pyramids.

and so on. SHRDLU is able to direct the construction of structures from these

blocks given assignments in natural language text. and is also able to answer

questions about the world and the blocks in it. Hubert Dreyfus. one of artificial

intelligence's most tenacious gadflies, immediately pOinted out that this is just

another example of a program which can never get out of its first box (Dreyfus.

1979). There is no obvious way for such a program to bootstrap itself out of this

limited domain into larger areas. and no reason to suspect that different micro

worlds should have in common any features at all. While Dreyfus' views were

hotly contested by Minsky and others when first aired. gradually people came to

accept that Dreyfus had identified a real problem.

All of these efforts in artifiCial intelligence could be grouped together as tradi

tional. with the heading encompassing expert systems, production systems,

typical tree-based natural language processors, discrimination nets, and so on.

One thing they hold in common is an overwhelming degree of problem specific

ity; that is~ they can all solve just one problem~ or maybe a variety of problems

in one domain.

Now~ let's come back to the Turing Test and the problems I believe its bastard

ization engendered in the field. Think again about the test itself and what it

requires in the abstract. Essentially~ to pass the Turing Test a computer pro

gram must be able to convince a human that the program is perforI]1ing up to

snuff (human snuff~ that is). This test became the de facto standard as the trial

which must be passed for a program to be conSidered intelligent. Still, writing a

program to actually do this was obviously too difficult~ and so researchers made

the assumption that the Turing Test could be partitioned into subtests, each in

a different domain. Thus, we have a Turing Test for chess, and one for dwellers

in blocks worlds, and one for corny Rogerian psychiatrists.

At any rate~ after these formative years and the failures that came with them

there was a slow turning over to alternative and more general ways of solving

problems, reaching full steam in the mid-80s with the publication of the Parallel

Distributed Processing books (Rumelhart and McClelland, 1986). ArtifiCial neu

ral networks are an abstraction of biological neural systems, where an idealized

neuron is the building block for a layered system of connections. In fact, neural

networks, most notably the perceptron, had been around for some time; one of

the earliest proponents of artifiCial intelligence, Warren McCulloch, along with

Walter Pitts, had actually developed a simple model of a biological neuron in

1943 and shown how collections of these could be used to perform any compu

tation. However, there had existed no effective way to train neural networks of

more than a single layer in depth, and they had fallen into disuse after the pub

lication of Minsky and Paperfs Perceptrons in 1969. This volume included a

devastating attack on the model named in the title and the delta learning rule it

made use of. Particularly, the authors were able to show that perceptrons could

not learn even the simple relationship of the Boolean exclUSive . OR. _ The PDP

books described artificial neural networks and their application in a compelling

fashion. and also included a description of a the back-propagation or general

ized delta rule for hidden weight tuning. The new learning rule allowed for fully

trainable multilevel networks, and this both refuted the objection by Minsky

and Papert and allowed the method to rise again from the depths of obscurity to

become well known and often used, both in research and in industry.

The other well known non-traditional set of techniques in artificial intelligence

is evolutionary algorithms, best known through genetic algorithms. As with

neural networks, some work with them was done concurrent to the very begin

nings of artificial intelligence, though not in that field. Like the name suggests,

evolutionary algorithms are based on the theory of evolution and natural

(unnatural?) selection; in effect. a random population of solutions is grown and

then maintained and bettered through some kind of combination of the candi

date solutions to form new members of the population.

In addition to being grouped together by exclusion from the traditional methods,

these particular non-traditional techniques also have in common at least

abstract biological foundations. This is certainly intellectually appealing, as it

automatically and necessarily brings them closer to the phenomenon they are

used to model. While not a direct congruency, it is far closer than the kind of

rules-based approaches of which traditional AI makes use, which we know are

at odds with natural organisms and systems. Another commonruity is that

these methods can be used to solve nearly any sort of problem, though in prac

tice not necessarily all at once. Again, this makes the methods more appealing

than traditional artificial intelligence, as it gives hope that they can be used to

produce the kinds of generality clearly needed to make a dent in the problems

facing the field.

1.2 Why Genetic Algorithms?

Of the two nontraditional methods mentioned, neural networks are by far the

better known and more often used. So, why would I choose genetic algorithms

as an area to focus on? Neural networks can do amazing things and can be

nearly direct reflections of the systems we'd like to model. However, they are

extremely slow to train for even simple problems when using the back propaga

tion learning rule, and their structures are notoriously difficult to specify.

Small changes in the numbers of neurons and their connections between layers

can make or break the success in a given application. Additionally, because

they are so widely used, there is quite a lot of literature about neural networks.

The Darwinian action of genetic algorithms is intrinsically beautiful. and the

idea is quite elegant. The basic action of a generic genetic algorithm is as fol-

lows:

1. The problem is examined and an encoding is found that can be repre
sented as a string of ones and zeroes. the building blocks of the "chromo-
somes" used. .

2. A function is developed that can grade candidate solutions of the prob
lem as it is encoded in step (1). A solution that completely solves a prob
lem would be given a rating of 100%. while one that only partially solves it
nlight be rated 430/0; a total failure would score 00/0. This is the mecha
nism for selecting the fitness of solutions.

3. An initial population of solutions is created, each a fixed length string
of randomly placed ones and zeroes.

4. Each solution is tested with the function described in step (2), and
they are all put in a rank-order.

5. With probability proportional to their fitnesses, solutions are selected
from the population, and are "bred" with the operators of cloned repro
duction, crossover, and mutation. See Figure 1 for details on these oper
ations. The new solutions created form a new population of the same size
as the initial population.

6. This cycle is repeated from step (4) above with the new population
until a solution emerges which is correct enough for the problem.

The applicability of genetic algorithms is limited only by the ability of the user to

generate an appropriate description of solutions in terms of ones and zeroes,

then. While the solution ultimately arrived at may not be very comprehensible

(coming in a binary string as it does), the process by which it is gotten is trans-

parent and intuitively meaningful. Theory behind genetic algorithms has been

harder to come by and often is subtle. relying heavily on probability theory to

describe the way that a population will converge on optimal solutions. Much of

the work has been done by Michael Vose and his collaborators, who have

derived formalisms of finite population sized genetic algorithms as a Markov

chain (Nix and Vose. 1991).3 For the purposes of application, it is sufficient, of

course. to know that GAs do in fact work.

This cleverness of modeling a computer learning process after natural selection;

the satisfying and relatively fault-tolerant (at least as opposed to neural net-

works) way in which genetic algorithms converge on good solutions: and the fact

that there are fewer applications of them to the problems that interest me were

all deciding factors in my turn to this area.

1.3 Why Genetic Programming?

In 1992 John Koza published an expanded version of his Ph.D. dissertation

entitled Genetic Programming. This described a new extension to the genetic

algorithm model in which candidate solutions were represented as trees com-

posed of functions and variables rather than fixed length strings. See figures 1

and 2 in the first appendix for descriptions of genetic crossover and mutation

with function trees. Rather than breeding bit strings which need to be decoded.

3. A Markov chain is a stochastic process where the probability that the system will be in any specific state
at time depends only on the state of the system at the time immediately before.

we are now breeding possible direct solutions to the problems at hand. There

are some additional constraints, the most important of which is that all ele

ments that make up a program tree -- the functions as internal nodes and the

terminals as leaf nodes -- must have consistent return values and must not fail

to work on any input possible. For example, a function for performing division

should probably not be but in the position of having to account for an input like

lbe quick brown fox," even though a program designed to do text processing of

some sort might accept that handily. Steps must be taken to .ensure that only

numbers reach arithmetical operators, or that if something else does there is

some nondestructive way of dealing with it. Additionally, because it is not pos

sible to divide a nurnber by zero, a division function must catch any instance

where the divisor is zero and deal with the problem in some arbitrary manner.

This is the primary advantage of genetic programming over simple genetic algo

rithms. Defining the problem becomes much more simple because it can be

defined in terms of the real solution required. If one is trying to model a mathe

matical function, all one must do is provide a few basic arithmetical functions

and some constants. and press go. If one wishes to develop a means of control

ling some robot with certain possible behaviors (e.g., move forward, turn left,

turn right, look~ grasp), then those behaviors become the functions and termi

nals, and to test the problem one has only to execute the candidate programs.

Defining problems in these terms is obviously much more natural than attempt

ing to model problems in terms of finite state machines or with complex gram-

mars derived from zeroes and ones, as is generally required by a standard

genetic algorithm.

2. The Genetic Programming Package

Part of the project was simply creating a working example of a module that

could be used to implement a genetic programming solution to various prob

lems. This process certainly turned out to be the most diffic~lt,.and very time

consuming for a couple of reasons. First, getting what I considered to be a rea

sonable amount of speed out of the package turned out to be fairly difficult. Ini

tially I designed the system using tree-based data structures to specify the

logical program trees. This turned out to be extremely slow because of the con

stant memory access; one day. frustrated by this implementation, I seized on

the plan to scrap it and write a new one, this time using a much faster array

based data structure. While this method is much quicker -- nearly an order of

magnitude, typically -- it was much more complicated to write and debug.

Though only around 1500 lines of code, it took a very long time to get working

correctly. In retrospect, the time taken rewriting the program might have been

better spent implementing a better memory allocation/garbage collection rou

tine for the Original tree-based program. Nevertheless, rewriting the program

did allow for some streamlining and addition of functionality, so I am ultimately

not dissatisfied.

Any user of the package must know how to program in C to at least a moderate

extent. While the module does vastly lighten the burden of finding a genetic

programming solution to a problem, it cannot do everything.

3. Application of the Genetic Programming Package

In this paper I am including three sample problems solved by the method of

genetic programming, using the module I developed. Only one·o(these applica

tions is in a new domain, but each had interesting results. The problems were

also chosen to demonstrate the large range of practical uses of genetic program

ming. The three are the Boolean 11 multiplexer, an autonomous lawnmower,

and SKI-combinator trees.

3.1 The Boolean 11 Multiplexer4

This is a standard device used in the binary logic of digital circuits. There are

three control lines, AO-A2, and eight data lines, DO-D7. Depending on which of

the control lines are asserted, one of eight different values is generated; on zero,

only the output of DO is passed out, on one, only the value of D 1, and so on, up

to a control value of seven producing only output D7. The programs evolved will

attempt to output the value of the correct data line. Koza pOints out that this is

a Boolean function of k + 2k arguments, making it a particular one of 22048 pos-

4. This problem is directly adapted from the 11 multiplexer in Koza (1992, pp 170-189)

sible Boolean functions of 11 arguments. This corresponds to a search space of

about 10616 points; considering that the roughly 10120 possible games of chess

have been shown to require a computation that would be halted by the heat

death of the universe. it is clear that this search space is intractable by blind

methods.5

In order to solve the problen1. we need to pick terminals and the functions to

operate on them. Here selection of terminals is sin1ple; we designate the set of

control and data lines as the terminals. and nothing else. The functions to be

used are a little less clear. but following Koza for now we will use if-then-else,

and the Boolean functions AND, OR. and NOT. These functions have three, two,

two. and one arguments respectively.

T = {AO, AI, A2, DO. Dl. D2, D3, D4. D5, D6. D7}

F = {AND. OR. NOT, IFTE}

Because there are 211 possible combinations of inputs. we will test each mem

ber of the population that many. 2048, times. The fitness will be calculated as

the sum of the correct outputs -- when a fitness of 2048 is reached, we will have

created a 100% successful program. Like Koza, I chose a population size of

4000. and set all other major parameters to his specifications as well. Unlike

Koza, I was completely unable to pick an initial value for the random number

5. Koza (1992, p. 172)

generator I used which would give me a population that would converge to a

solution in nine generations. Because we are evaluating 2048 * 4000 individu-

als per generation, each of which averages around 200 instructions (something

like 1.5 billion high level functions from the set (F + T}, per generation), this can

mean that even with the fast GP I've implemented, quite a bit of time is required

to find a solution.

A typical run requires between 25-35 generations to solution,· although there

has been one that took only 15. One of the parameters Koza specifies is the

depth of the program trees in the initial population: 6 is used here. In my expe-

rience, an initial depth parameter of 3 tended to produce populations that con-

verged significantly more quickly, typically between 10-20 generations.

Koza uses this particular problem as an illustrative example of some of the self-

organizing properties of genetic programming. Specifically he suggests that the

(attractive) structure of the solution arose due to the "relentless pressure

exerted by the fitness measure."6 Again, I would like to suggest that he was

simply very lucky, and that while there is a relentless pressure towards the pro-

duction of solutions, there is little in here that could possibly pressure nice-

looking solutions. 7 For every solution like his:

6. Koza(1992,p. 179)
7. It is possible to include some notion of what the function ought to look like in the evaluation function,

including, for example, a term that decreases as total program size increases, pressuring smaller pro
grams. This tends to decrease convergence towards a problem solution, however, and must be carefully
handled.

(lFTE AO (lFTE A2 (lFTE Al D7 (lFTE AO D5 DO))
(lFTE AO (lFTE Al (lFTE A2 D7 D3) DI) DO))

(lFTE A2 (lFTE Al D6 D4)
(lFTE A2 D4 (lFTE Al D2 (lFTE A2 D7 DO)))))

there are probably thousands like the following solution I reached:

(I I (&& (&& (lFTE (lFTE Al (&& Al AO) (! (&& A2 AO))) (! (&& A2 AO))
(&& (I I (I I DO AI) (lFTE DO D7 AO)) (I I (lFTE (I I (&& Al AO) (lFTE
(! (lFTE DO AO AO)) (lFTE A2 D3 D2) (&& (! (&& A2 AO)) (! (I I Al
D 1))))) (lFTE A2 D3 D6) (I I (lFTE (&& AO D7) AO AO) (&& D3 D2)))
(lFTE A2 D3 (lFTE (! (I I (I I DO AI) (lFTE D7 Al D4))) (I I (lFTE Al D2
D4) (&& DIAl)) (I I (I I DO AI) (lFTE D7 Al D4))))))) (lFTE (! D5) (&&
(lFTE (! AI) (lFTE (! (&& (I I (lFTE A2 D 1 (lFTE AO D6 DO)) D5) (&& DO
AO))) (lFTE A2 DIDO) (lFTE D7 Al D4)) (! (! (I I (I I DO AI) (lFTE·D7
Al D4))))) (lFTE (! (&& A2 AO)) (lFTE Al Al D 1) D5)) (I I D5 DO)))
(lFTE (lFTE Al (&& (&& AO D7) (I I D4 D7)) (I I (&& Al AO) (! D5)))
(lFTE A2 D 1 (lFTE AO D6 DO)) (lFTE (lFTE Al (&& A2 AO) (! (&& A2
AO))) (lFTE A2 D 1 (lFTE AO (lFTE A2 D 1 (lFTE Al D2 D4)) DO)) (&& (I I
(I I DO AI) (lFTE DO D7 AO)) (I I (lFTE (I I (&& Al AO) (! D5)) (&& A2
AO) (I I (lFTE DO AO AO) (lFTE (! AI) (! D7) (! AI)))) (lFTE A2 D3
(lFTE (! (! AO)) (lFTE AO D6 DO) (lFTE (! (! AO)) (lFTE AO D6 DO) (I I
(! AI) (lFTE A2 D3 D2)))))))))) (&& (lFTE AO (lFTE Al D7 D4) DO) (lFTE
Al (&& A2 AO) (! (&& A2 (lFTE AO (lFTE Al D7 D4) DO))))))

To say the least, this is not a very illuminating piece of code. There are many

sub expressions above that could be Simplified since they include redundant

functions, but even then the result would be quite unwieldy.

A final point of interest regarding the 11 multiplexer can be found after examin-

ing the solution Koza reached; namely, the only function his solution makes use

of is the IFTE operator. What if we reduced the total function set to include only

that operator? This will obviously still give a suffiCient degree of functionality to

solve the problem, and one of the selling pOints of this method is that a suffi-

cient set ought to be good enough to solve the problem.

When I reduced the function set accordingly, I got a surprising result, which

was that none of the runs ever converged within 50 generations. Apparently it

is not always enough just to include the bare minimum of a search space to the

genetic programming module.

3.2 The Lawnmower Problem

This is a problem of my own devising, although it does draw fronl ideas in

Koza's book regarding an artifiCial ant picking up food along a trail.

The function set is:

F = {IF GRASS AHEAD, IF MOWN LAWN AHEAD, PROG2, PROG3}

Both of the IF expressions take two arguments, the first of which is executed if

the condition (grass ahead, mown lawn ahead) is met and the second if it is not.

PROG2 and PROG3 take two and three arguments respectively, and simply exe

cute them one after the other unconditionally.

The terminal set is:

T = {TURN LEFr, TURN RIGHT, MOVE FORWARD}

These each do as you would expect. Additionally, each of these ternlinals incre

ments a counter corresponding to the total number of (abstract) time steps the

lawn mower uses. When the counter reaches a certain number, computation

for that member of the population ends. Another condition of the mower's exist-

ence is that. of course, any square it passes over that contains grass becomes

mown.

The evaluation function for this problem takes into account two things. First, it

sums the successfully mown squares. Then there is a penalty to the mower for

driving over non-grassy or mown surfaces. These might correspond to gravel,

which we would like to avoid. of course. So, this penalty, the number of times a

non-lawn square is driven over, is subtracted from the mown total. This num

ber is then compared to the total number of grassy squares to give the total fit

ness. To achieve 1000/0 success, then, no nongrassy squares may be covered.

Initially I tried to evolve programs with just the information and functionality

above. The population size was set to 8000, and the initial depth of generated

programs to 6. The mower performed fairly well. though not flawlessly. on sim

ple problems like a square shaped virtual lawn. It failed miserably on more

complex patterns such as spirals and concave polygons (those with internal

angles of greater than 180 degrees). To remedy this I inserted the program eval

uation into a hardcoded looping structure, which looped until the mower had

used up all its time steps.

After this modification the mower performed amazingly well. It was able to

eventually learn even qUite difficult shapes, such as the joined spiral shown in

ascii graphics on the following page.

The interesting thing about the mower's performance on such difficult shapes

as this is that typically it would immediately hone in on a fairly good solution, in

this case successfully traversing the basic spiral only, as seen in the first graph

of figure 3. After this first success there would be a long refractory period of no

change, sometimes lasting as long as 10 or 15 generations. Looking at the pat-

tern it is easy to guess why (the $ at the upper left corner is the starting point of

the mower. It is facing south):

$###

##########################11111#1#11#1##### #
I # #
##1##11##1#11111#11111#11#11##11# # #
I # # # I #
•• # ##########11#1##1#111##11 # # #
I # # # I #
#1#1##1##111#11 I I # #
I I I # # #
f # # ####### # # # # #

f # # # #### # # # # #

##11##1#11##1#11111#11##1##1# I I
I I II I #
II # #
#f########f########################### #
I
#####.##################1####1###1##############

The spiral is very easy to complete with the new hardwired iterating structure.

A simple (IFGRASSAfIEAD FORWARD RIGHT) will do nicely, for example. Any

modification mowing new squares will have the side effect of bypassing large

sections of the lawn maze, and in the absence of sophisticated case rules the

mower will more than likely fail to return to mow those sections later. Eventu

ally, though, a slightly more effective searcher will tend to be produced, which

quickly opens the flood gates for more and more effective solutions using the

new operator. Once a single square not in the spiral was mown in addition to

the spiral, it typically took no more than four to five more generations to attain

1000/0 success. The rather devious path taken by one 1000/0 successful solution

is seen at the bottom of figure 3.

I was curious to see if modifying the function set to include some iterating

structures would make it possible to evolve successful mowing programs with

out the hardwired iterator in the evaluation code. To this end I added two loop

ing functions, a WHILE GRASS AHEAD MOVE FORWARD and a corresponding

function testing for mown squares. The loop in the evaluation code was

removed.

I didn't expect to get quite the success of the hardwired iterator, but was sur

prised to find that these new structures almost totally failed to increase the fit

ness of the population, to the point that the most fit programs typically didn't

even include the new operators, or only included them in spots which could not

logically ever be reached. This was true on all problems, including a bare

square lawn, where it would be easy to handcode a solution using these itera

tors to achieve at least a reasonable level of fitness.

L

The lesson from this is again that genetic programming can be somewhat

unpredictable. even with very plausible operation sets. However, it can also

solve quite difficult problems; it would be hard to imagine writing a successful

navigator of the maze-like lawn by hand given only the information the mower

has (i.e .. it can only sense the contents of the square directly in front of it).

3.3 SKI-Combinator Trees

In the early fall of this year, Bruce MacLennan released a technical report inves

tigating some of the properties of a specific combinatory logic system, one based

on the SKI calculus.8 His aims were specifically to examine the possibility of

using SKI trees to model chenlical processes; in this preliminary paper he con

centrated on an explanation of the SKI operators and set about trying to define

limits on the behavior of SKI strings. or trees which branch only to the left,

based on their statistical make-up.

The S. K. and I combinators are fairly simply defined as follows.

The I combinator is the identity function, defined by the rewrite rule Ix => x.

This is simply to say that I replaces itself by its argument.

The K operator is a bit more complicated. written as Kxy => x. Like the I combi-

8. Maclennan (1997)

nator, K removes itself from the tree. ThiS time, however, it also removes its sec

ond argument, which may be another tree in itself. K can have the effect of

drastically reducing the total size of the tree, therefore.

Finally, the S combinator is the most complicated member of the group. It is

written as follows: Sxyz => ((xz)(yz)). While tricky to explain precisely, this oper

ator like the others deletes itself from the tree upon application. It is produc

tive, however, and in addition to rearranging its immediate locale
c
aI~o

completely duplicates one of its arguments, the subtree z. So, just as K deletes

a subtree, S creates a duplication of one. The combinators are complementary

in a way.9

A final thing to consider is the order in which these combinators are applied to

the tree they reside in. Typically, they are applied at each node in reverse order

(that is, I, then failing that, K then failing that, S). Additionally, MacLennan

only considered the SKI reduction of trees in the normal order. Normal order

reduction consists of always applying the operators at the point nearest possible

the root of the tree, that is, closest to the top of the tree. With this constraint, it

can be sure that if a tree grows infinitely, then it would also grow infinitely

under all other orders of reductions; likewise, if any order can complete, one

can be sure that a normal order reduction will.

9. For a more detailed explanation, as well as some graphical aids, see Maclennan (1997, pp 2-3)

In hopes of laying out some groundwork that will be able to further this

research, I implemented an SKI problem with my genetic programming package.

There are two advantages here over the methods offered in the technical report.

One, the GP package automatically creates fully branching SKI trees, as

opposed to the left branching strings so far studied. Two, it is possible to breed

the strings to various arbitrary measures of fitness.

The terminal set is:

T = {S, K, I}

The function set is:

F = (APPLICATION}

The APPLICATION operator is simply the glue forming the structure of a given

SKI tree; it takes two arguments, each of which is either another APPLICATION

operator or one of the SKI terminals, forming either another branching point or

a leaf.

Because it was conjectured that the most interesting SKI reduction behaviors

are likely to exist in trees that neither die immediately out nor immediately

shoot to infinite size, I decided to breed SKI trees for the slope of their expansion

in size versus number of applications of the reduction operation. The evalua

tion function did not exactly check this slope since it was likely to fluctuate, but

only the end pOints, with the average of the size being used an abstraction of the

middle height. I was then able to select for a specific pseudo-slope. Due to

memory limitations and time considerations, I stopped reducing the SKI trees

after 25 iterations.

This is a strange enough problem that it seems likely it would be extremely diffi

cult for a human to come up with a good way of building trees that meet the

above criteria -- I certainly don't see how to do it. Genetic programming had no

trouble at all. At this point I've bred trees corresponding to several different

slopes (1, 5, 10~ 20, 40 per application of tree reduction), and followed the rela

tive proportion of S, K and I operators. There is not yet enough d'atagathered to

provide a statistically valid answer to the question of whether there are interest

ing, but the initial results seem to suggest that for this problem, at least, the

structure of the SKI trees is more important than the relative proportions of the

combinators in them. The only thing that held constant was that there were

always apprOximately 10-200/0 more S operators than Ks and Is. It should again

be stressed that all the results are not yet in.

3.4 Discussion of Genetic Programming

So, these examples and results obtained through them should show some of the

wide variety of uses genetic programming can fairly easily be put to. Like other

techniques, the method is not without its pitfalls and shortcomings. There are

even more parameters to tweak than in a typical neural network, for example;

though~ to be fair, genetic algorithms and programming seem more tolerant of

the settings of these parameters. It is not always clear how to apply GP to a

given problem, despite it being much more simple than the corresponding pro

cess with neural networks and normal genetic algorithms, let alone traditional

rules based systems. In the end I think more effort needs to be devoted to

increasing the efficiency and productivity of the model before it will truly come

into its own. Drawing from real biological systems may be the best way to do

this: certainly nature has done all right with its own version.

4. Conclusions

I hope I've managed to demonstrate both a knowledge of the field of artificial

intelligence and its history and philosophy, as well as some of the finer pOints of

one method it has available to it. At this point, artifiCial intelligence seems to

have been around for a very long time, though the modern field is no more than

50 or so years old. Old, but surprisingly young. I am left feeling that this quote

from Wittgenstein is particularly relevant: A child has much to learn before it

can even pretend. 10 This applies not only to the systems we endeavor to make,

but to ourselves, as well. With the new nontraditional models, I begin to feel

that we may soon at least be pretending convincingly.

5. Bibliography

10. Unfortunately, the source of this quote is forever lost lO me.

1. Dreyfus, H. (1979) "From Micro-Worlds to Knowledge Representation: AI at
an Impass." From What Computers Can't Do, Harper and Row, New York.

2. Koza, J. R. (1992) Genetic Programming: On the Programming of Comput
ers by Means of Natural Selection. The MIT Press, Cambridge, MA

3. MacLennan, B. J. (1997) "Preliminary Investigation of Random SKI-Combi
nator Trees" Technical Report, University of Tennessee.

4. Minsky, M., and Papert, S. (1969). Perceptrons. The MIT Press, Cambridge,
MA

5. Mitchell, M. (1996) An Introduction to Genetic Algorithms: The MIT Press,
Cambridge, MA

6. Nix, A. E., and Vose, M. D. (1991) "Modeling genetic algorithms with Markov
chains." Annals of Mathematics and Artificial Intelligence 5: 79-88.

7. Penrose, R. (1994) Shadows of the Mind. Oxford university Press, New
York.

8. Rumelhart, D. E. and McClelland, J. L. (1986) Parallel Distributed Process
ing: Explorations in the Microstructure of Cognition. The MIT Press,
Cambridge, MA

9. Searle, J. R. (1980) "Minds, Brains, and Programs.'" In Mind Design: Phi
losophy, Psychology, and Artificial Intelligence, ed. J. Haugeland. The
MIT Press, Cambridge, MA

10. Turing, A. (1950) "Computing Machinery and Intelligence." In Computers
and Thought, E. A. Feigenbaum and J. Feldman, eds. McGraw-Hill, New
York, c. 1963

Appendix A:
Graphs and Figures

Figure 2.

Mutation in Genetic Programming

Parent

Child

, ..;
........ _--

New mutation subtree/ ..- ""'
/ I',

/
/

/

I
/

/
l

I

I \
I \

..; ""---
/

/
/

Mutation in genetic programming is similar to mutation in standard genetic algorithms, with a
few exceptions. A single parent is selected from the population, and then a link in the parent's
program tree is chosen. At this point an entirely new random tree is generated; this is typically
kept a moderate size to avoid too large a growth in program evaluation time. The subtree below
the selected link in the parent tree is then deleted and immediately replaced with the newly gener
ated subtree, to form a single new child program.

Parent A

Child A

Figure 1.

Crossover in Genetic Programming
Parent B

\
\
\

\
e \

/

I
I
I

I

, .(
" / \ /

...... ./ / -- \ / ChildB
\
\

\ ,

\
\

,

\
\

\/

Crossover in genetic programming is a relatively simple process. Two parents are selected (as
here, they may both be the same), and a link in the program tree of each parent is chosen. To cre
ate the children the subtrees below those links are swapped, typically resulting in two new pro
grams. Note that this process can both grow and shrink program trees.

	Zooming in on Artificial Intelligence
	Recommended Citation

	tmp.1272409740.pdf.UxCey

