331 research outputs found

    Fuzzy multi-objective bilevel decision making by an approximation Kth-best approach

    Get PDF
    Many industrial decisions problems are decentralized in which decision makers are arranged at two levels, called bilevel decision problems. Bilevel decision making may involve uncertain parameters which appear either in the objective functions or constraints of the leader or the follower or both. Furthermore, the leader and the follower may have multiple conflict decision objectives that should be optimized simultaneously. This study proposes an approximation K th-best approach to solve the fuzzy multi-objective bilevel problem. Two case based examples further illustrate how to use the approach to solve industrial decision problems

    Particle swarm optimization for bi-level pricing problems in supply chains

    Full text link
    With rapid technological innovation and strong competition in hi-tech industries such as computer and communication organizations, the upstream component price and the downstream product cost usually decline significantly with time. As a result, an effective pricing supply chain model is very important. This paper first establishes two bi-level pricing models for pricing problems with the buyer and the vendor in a supply chain designated as the leader and the follower, respectively. A particle swarm optimization (PSO) based algorithm is developed to solve problems defined by these bi-level pricing models. Experiments illustrate that this PSO based algorithm can achieve a profit increase for buyers or vendors if they are treated as the leaders under some situations, compared with the existing methods. © 2010 Springer Science+Business Media, LLC

    A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration

    Get PDF
    Planning of an optimal product family architecture (PFA) plays a critical role in defining an organization's product platforms for product variant configuration while leveraging commonality and variety. The focus of PFA planning has been traditionally limited to the product design stage, yet with limited consideration of the downstream supply chain-related issues. Decisions of supply chain configuration have a profound impact on not only the end cost of product family fulfillment, but also how to design the architecture of module configuration within a product family. It is imperative for product family architecting to be optimized in conjunction with supply chain configuration decisions. This paper formulates joint optimization of PFA planning and supply chain configuration as a Stackelberg game. A nonlinear, mixed integer bilevel programming model is developed to deal with the leader–follower game decisions between product family architecting and supply chain configuration. The PFA decision making is represented as an upper-level optimization problem for optimal selection of the base modules and compound modules. A lower-level optimization problem copes with supply chain decisions in accordance with the upper-level decisions of product variant configuration. Consistent with the bilevel optimization model, a nested genetic algorithm is developed to derive near optimal solutions for PFA and the corresponding supply chain network. A case study of joint PFA and supply chain decisions for power transformers is reported to demonstrate the feasibility and potential of the proposed Stackelberg game theoretic joint optimization of PFA and supply chain decisions

    An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem

    Get PDF
    This paper presents a new class of multiple-follower bilevel problems and a heuristic approach to solving them. In this new class of problems, the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. We show that current approaches for solving multiple-follower problems are unsuitable for our new class of problems and instead we propose a novel analytics-based heuristic decomposition approach. This approach uses Monte Carlo simulation and k-medoids clustering to reduce the bilevel problem to a single level, which can then be solved using integer programming techniques. The examples presented show that our approach produces better solutions and scales up better than the other approaches in the literature. Furthermore, for large problems, we combine our approach with the use of self-organising maps in place of k-medoids clustering, which significantly reduces the clustering times. Finally, we apply our approach to a real-life cutting stock problem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel problem and solved using our approachThis publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/228

    Solving a type of biobjective bilevel programming problem using NSGA-II

    Get PDF
    AbstractThis paper considers a type of biobjective bilevel programming problem, which is derived from a single objective bilevel programming problem via lifting the objective function at the lower level up to the upper level. The efficient solutions to such a model can be considered as candidates for the after optimization bargaining between the decision-makers at both levels who retain the original bilevel decision-making structure. We use a popular multiobjective evolutionary algorithm, NSGA-II, to solve this type of problem. The algorithm is tested on some small-dimensional benchmark problems from the literature. Computational results show that the NSGA-II algorithm is capable of solving the problems efficiently and effectively. Hence, it provides a promising visualization tool to help the decision-makers find the best trade-off in bargaining
    corecore