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Abstract
This paper presents a new class of multiple-follower bilevel problems and a heuristic 
approach to solving them. In this new class of problems, the followers may be non-
linear, do not share constraints or variables, and are at most weakly constrained. This 
allows the leader variables to be partitioned among the followers. We show that cur-
rent approaches for solving multiple-follower problems are unsuitable for our new 
class of problems and instead we propose a novel analytics-based heuristic decom-
position approach. This approach uses Monte Carlo simulation and k-medoids clus-
tering to reduce the bilevel problem to a single level, which can then be solved using 
integer programming techniques. The examples presented show that our approach 
produces better solutions and scales up better than the other approaches in the lit-
erature. Furthermore, for large problems, we combine our approach with the use of 
self-organising maps in place of k-medoids clustering, which significantly reduces 
the clustering times. Finally, we apply our approach to a real-life cutting stock prob-
lem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel 
problem and solved using our approach.
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1  Introduction

Mathematical Optimisation has been used to solve practical problems in areas such 
as scheduling, planning, cutting stock, transportation as well as other fields (Van-
derbei 2007; Kantorovich 1960; Bazaraa et al. 2010). In practical applications, how-
ever, optimisation problems are rarely straightforward since challenges such as sev-
eral levels of optimisation and/or nonlinearities arise.

A bilevel optimisation problem is one in which one optimisation problem is 
nested within another. There is a leader (or outer/upper-level) problem, and a fol-
lower (or inner/lower-level) problem. The variables are split into leader variables 
and follower variables. The leaders solution must optimise an objective, with the 
constraint that the follower optimises a different objective. Both the leader and fol-
lower influence each other: the leader makes a decision while taking the followers 
objective into account, and the follower reacts to the leader’s decisions in an opti-
mal manner. Due to this interaction, the solution of bilevel problems is difficult in 
the general case (Colson et al. 2007). Besides, bilevel problems become more diffi-
cult to solve when they contain nonlinearities (such as the problems analysed in this 
paper). A general mathematical formulation of the bilevel problems is as follows:

where � represents the leader decision vector and � the follower decision vector. The 
objective functions at the upper- and lower-level are represented by F and f, respec-
tively. G and g represent the inequality constraints at the upper- and lower-levels, 
respectively, and equality constraints may also exist. X and Y are the bound con-
straints for the upper-level decision vector and lower-level decision vector, respec-
tively. The condition � ∈ argmin� forces � to be an optimal solution to the follower 
problem, and can be considered as a computationally expensive constraint.

One type of bilevel problem is the single-leader, multiple-follower problem, 
which has been used in applications like toll-setting, resource management, con-
flict resolution and many others. While several classical and evolutionary solution 
approaches exist for solving these multiple-follower problems, they are either not 
applicable in cases in which the follower problems are not traditional optimisation 
problems, or do not scale up appropriately. For this reason, in this paper, we pre-
sent an alternative heuristic decomposition approach that decomposes the bilevel 
lower-level problem into smaller sub-problems (each sub-problem is composed of a 
follower) which are solved to optimality. Then, these solutions are used for comput-
ing an approximate solution to the upper-level bilevel problem (composed by the 
leader).

Furthermore, intending to reduce the computation time of solving this type of 
bilevel problems (which typically are large-scale when associated with real appli-
cations), our approach uses data-driven/analytics-based methods (specifically, we 
use clustering techniques). In data-driven optimisation, the goal is to use insights 

(1)

min�,�F(�, �)

s.t. � ∈ argmin�{f (�, �) | g(�, �) ≤ 0}

G(�, �) ≤ 0

� ∈ X, � ∈ Y
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from any available data to improve the quality of the decisions made or the solution 
approaches taken. Analytics techniques can therefore be used to enhance decision 
making by learning useful features from the data or using data to simplify math-
ematical models, thus reducing the complexity and/or solution times of the models.

This paper is an extension of the work originally presented in the 2019 World 
Congress on Global Optimization (WCGO) Fajemisin et  al. (2020). In this exten-
sion, we have focussed on providing a detailed literature review, the use of self-
organising maps as an alternative to clustering and applying our approach to a real-
life cutting stock problem: the forest harvesting problem. The main contributions 
of the work presented are: (i) a new class of multiple-follower bilevel problems is 
proposed; (ii) a novel analytics-based heuristic decomposition approach for solving 
this class of large-scale bilevel multiple-follower problems is given; (iii) the forest 
harvesting problem is reformulated as a bilevel optimisation problem to take into 
account the cutting operations of the harvesters.

This paper is organised as follows: a literature review of bilevel decomposition 
approaches is given in Sect. 2. The new class of bilevel multiple-follower problems 
we consider is given in Sect.  3. The heuristic decomposition method is described 
in Sect. 4, while numerical examples demonstrating the advantage of the analytics-
based approach over evolutionary approaches are given in Sect. 5. Our approach is 
applied to the bilevel cutting stock problem in Sect. 6, and general conclusions are 
given in Sect. 7.

2 � Related work

Heuristic decomposition approaches divide the problem into subproblems, which are 
solved individually, and the results assembled into a solution to the original prob-
lem. None of these steps needs to be optimal, for example in Elkamel et al. (1997) 
the subproblems are solved optimally then combined into a near-optimal solution, 
while in Krüger et  al. (1995) the subproblems are solved approximately. In these 
papers, scheduling problems are addressed. As an example of another application 
domain, in Lin et al. (2011) the authors present a decomposition heuristic for a net-
work design problem. Our approach decomposes the problem into follower subprob-
lems, and it is an approximate approach because we use sampling and clustering.

The following subsections provide an overview of the current solution approaches 
for bilevel problems and the motivation for an analytics-based approach.

2.1 � Decomposition approaches in the literature

Bilevel problems are known to be non-convex, non-differentiable and strongly NP

-hard even in the simplest cases (Colson et al. 2007), and so most approaches for 
solving them involve some form of decomposition of the problem into more trac-
table forms. The most common method for single-level reduction is to replace the 
lower-level problem with its Karush–Kuhn–Tucker (KKT) (Bertsekas 1999) condi-
tions (Bard 1984; Dempe and Zemkoho 2012). The authors in Visweswaran et al. 
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(1996) present a decomposition approach for solving linear and quadratic bilevel 
problems. They transform the problem into a single-level one by replacing the inner 
problem with its KKT conditions. The problem is then decomposed into a series 
of primal and relaxed-dual sub-problems, whose solutions are used as lower and 
upper bounds. This procedure is run iteratively until a global optimum is found. This 
method is similar to that in Zeng and An (2014), where the problem is first reformu-
lated into a single-level problem using KKT conditions and strong duality. Then, a 
similar iterative process is carried out until an optimal solution is found.

More complex approaches combine the use of the KKT conditions with other 
techniques. For example, in Kristianto et al. (2013) the stochastic bilevel problem 
is reduced to a single level using KKT conditions and is then solved using Benders’ 
decomposition. Related approaches include (Saharidis and Ierapetritou 2009), where 
an algorithm for solving mixed-integer bilevel linear problems based on Benders’ 
decomposition is presented. Similarly, (Raidl et  al. 2014) uses logic-based Bend-
ers’ decomposition to solve a bilevel vehicle routing problem, which is combined 
with a variable neighbourhood search heuristic to speed up search time and improve 
scalability. To address the problem of weak Benders’ cuts, (Nishi et al. 2011) uses a 
Lagrangian relaxation method to generate stronger cuts for simultaneous scheduling 
and routing problem for automated guided vehicles.

In Dempe and Franke (2016) lower-level problems are replaced with their Fritz-
John conditions (John 1948), and an algorithm is presented for solving problems 
with fully convex lower-levels. This method is applied in Dempe and Franke (2014) 
to solve a bilevel road pricing problem. Nogales Martín and Miguel (2004) show a 
relationship between one bilevel decomposition algorithm and a direct interior-point 
method based on Newton’s method. The authors in Iyer and Grossmann (1998) pre-
sent a decomposition algorithm for solving a network planning problem. The upper 
level is solved to get an upper bound, which is then used to get a solution for the 
lower level problem which provides a lower bound. The process occurs iteratively, 
adding integer cuts along the way until a small enough gap between the bounds is 
achieved.

In Sugiyama et  al. (2012), the authors solve a railway crew rostering problem. 
Their decomposition is in the form of cuts to reduce the feasible region of the master 
problem. Local search is also incorporated to improve the upper bound generated by 
solving the sub-problems. In Caramia and Mari (2016) the decomposition algorithm 
proposed consists of solving the single-level relaxation (SLR) of the Bilevel Facility 
Location (BFL) problem, solving the slave problem (SVP) which is the BFL for a 
given fixed set of open facilities, generating cuts based on the structure of the prob-
lem, and repeating until a stopping criterion is reached.

As with single-follower bilevel problems, both classical and evolution-
ary approaches have been used for solving Bilevel Multiple-Follower (BLMF) 
problems. Lu et al. (2006) presents a general framework and solutions for these 
problems. Nine classes of multiple-follower problems are presented (none of 
which include the problem class proposed in Sect. 3) with corresponding mod-
els presented for each class. Also, an extended Kuhn-Tucker approach is pre-
sented for solving the uncooperative model to optimality. A practical example 
in the form of a road network problem is given. Similarly, (Lu et al. 2005) uses 
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a Kuhn-Tucker (KT) approach for BLMF problems in which the followers may 
or may not have shared variables. Shi et  al. (2005) and Lu et  al. (2007) use 
extended KT approaches. In Lu et  al. (2007) a branch-and-bound algorithm is 
used to solve the problems with referential-uncooperative followers. Calvete and 
Galé (2007) reformulates a problem with multiple followers into one with one 
leader and one follower by replacing the lower levels with an equivalent objec-
tive and constraint region. This method cannot be applied to the BPMSIF, as 
neither its objectives nor its inducible region are equivalent to those of the prob-
lem class addressed in Calvete and Galé (2007).

There is also literature on applying the Kth-best approach to problems with 
multiple followers. Shi et  al. (2005) presents the theoretical properties of 
BLMFs and Kth-best approach for solving such problems, while (Shi et al. 2007) 
uses the approach for problems with shared variables among followers. Simi-
larly, (Zhang et  al. 2008b) presents an extended Kth-best approach for solving 
referential-uncooperative BLMF decision problems, and provides an application 
in the form of a logistics planning problem.

Fuzzy approaches to solving BLMFs include (Wang et al. 2009) which uses 
a fuzzy interactive algorithm to solve problems with partially shared variables 
among the followers. Zhang and Lu (2010) combines fuzzy models and a Kth-
best algorithm to solve cooperative multiple-follower problems. Fuzzy models 
combined with a branch-and-bound algorithm have also been used in Zhang 
et al. (2008a, b, 2007) to solve problems with shared decision variables among 
the followers.

Decomposition approaches that also incorporate evolutionary approaches 
exist. A Co-Evolutionary Decomposition-based Bilevel Algorithm (CODBA) is 
presented in Chaabani et al. (2015), in which an algorithm is first used to gener-
ate a set of points from a discrete solution space. This allows them to generate 
a population of solutions for the lower-level problem. Several sub-populations 
of the lower-level problem are generated, and the best individuals in the sub-
populations are allowed to co-evolve. CODBA II (Chaabani et  al. 2015) is an 
improvement in which parallelism and co-evolution are implemented at both lev-
els of the bilevel problem. Evolutionary approaches also exist where an iterative 
approximation of the reaction set is used to approximate the lower-level problem 
(Sinha et al. 2013, 2017, 2014). Additionally, decomposition approaches involv-
ing evolutionary approaches are given in Li and Wang (2010); Li et al. (2016). 
In terms of multiple-follower problems, the literature includes (Angelo and Bar-
bosa 2015), where a differential evolution method is used to solve cases in which 
there is information shared between the followers. Liu (1998) presents a genetic 
algorithm for solving nonlinear multilevel problems with multiple followers. 
Also, (Islam et al. 2016) extend their bilevel memetic algorithm to solve prob-
lems with multiple followers using a combination of global and local search. 
The authors in Ke et al. (2016) combine fuzzy programming with an evolution-
ary algorithm, as well as neural networks to solve a multi-follower problem with 
non-cooperative followers. Reviews on the use of metaheuristic approaches in 
bilevel optimisation are given in Talbi (2013); Sinha et al. (2017).
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2.2 � Motivation for the analytics‑based heuristic decomposition approach

In summary, both classical and evolutionary approaches have been applied to sin-
gle- and multi-follower problems. Lu et al. (2006) presents a general framework 
and solutions for nine classes of multi-follower problem, but none are applica-
ble to the new class of problems we consider in Sect. 3. The authors in Calvete 
and Galé (2007) reformulate a problem with multiple followers into one with one 
leader and one follower, by replacing the lower levels with an equivalent objec-
tive and constraint region. This method also cannot be applied to our problem, as 
neither its objectives nor its inducible region are equivalent to the problem class 
of Calvete and Galé (2007). Additionally, the methods proposed in Calvete and 
Galé (2007); Lu et  al. (2006) assume that the followers are linear, which is not 
the case with our class of problems. Most classical methods for handling bilevel 
problems require assumptions of smoothness, linearity or convexity, while we 
make no such assumptions. Evolutionary and meta-heuristic techniques also do 
not make these assumptions (Angelo and Barbosa 2015; Islam et  al. 2016; Liu 
1998) but most are computationally intensive nested strategies. They are efficient 
for smaller problems but do not scale up well to large-scale problems. In contrast, 
our analytics-based approach scales up well as the number of followers increases 
(see Sect. 5).

3 � A new class of bilevel problems

In Bilevel Multi-Follower (BLMF) problems there may be several followers, and 
multi-leader problems are also known.

For a BLMF problem with Q followers, let � represent the leader decision vector, 
and �q the decision vector for follower q ( q = 1…Q ). The leader chooses a strat-
egy � , following which each follower selects its own strategy in response to � . The 
BLMF problem may be either cooperative, partially cooperative or uncooperative, 
depending on the leader and follower objectives. Based on the type of interaction 
between followers, nine classes of linear BLMF problems are identified in Lu et al. 
(2006). Problems in which the followers do not share objectives or constraints are 
known as “independent” and take the form:

Several researchers have worked on bilevel optimisation with multiple independent 
followers (Lu et al. 2006; Zhang and Lu 2010). However, we strengthen this inde-
pendence condition to one we call strong independence.

min�,�1…�Q
F(�, �1,… , �Q)

s.t. G(�, �1,… , �Q) ≤ 0

�q ∈ Xq,

where each �q (q = 1,… ,Q) solves

min�q f (�, �1,… , �Q)

s.t. g(�, �1,… , �Q) ≤ 0
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Definition 1  A Bilevel Problem with Multiple Strongly Independent Followers 
(BPMSIF) is one in which: 

	 (i)	 the followers do not share each others’ follower or leader variables, so that � 
can be partitioned into q parts: �q ( q = 1…Q);

	 (ii)	 follower functions fq(�q, �q) are allowed to be nonlinear;
	 (iii)	 variables from different follower problems are not tightly mutually constrained.

In (iii) weak constraints such as a single linear inequality are allowed. Thus the 
BPMSIF has the form:

where F, fq may be any (possibly nonlinear) objective functions, G, gq may be any 
set of (possibly nonlinear) constraints, the G constraints are weak, and Xq, Yq may 
be vectors of any variable domains (real, integer, binary, or richer Constraint Pro-
gramming domains such as set variables). Examples of bilevel real applications with 
nonlinearities are (Herskovits et  al. 2000), (John 1948) and (Calvete et  al. 2011). 
The last two are applied to planning problems. In this paper, in Sect. 6 we address a 
cutting stock problem associated with a forestry harvesting real application, which is 
a BPMSIF, as stated in Definition 1.

Problem (2) satisfies the features of a BPMSIF. Firstly, each follower function 
here can be seen to be a function of only its variables �q and a portion of the leader’s 
variables �q . Secondly, G(�1,… , �Q, �1,… , �Q) ≤ 0 is weak and may, for example, 
take the form of a simple weighted sum such as 

∑Q

q
Bqyq ≤ b , where the Bq and b 

are constants. The BPMSIF is different from multi-leader problems such as those of 
(DeMiguel and Xu 2009; Lu et al. 2016; Ramos et al. 2016). Its constraint region is:

The projection of Ω onto the leader’s decision space is:

The feasible set for follower q is affected by a corresponding part �q of a given 
leader decision vector so that:

Each follower’s rational reaction set is given as:

(2)

min�1…�Q,�1…�Q
F(�1,… , �Q, �1,… , �Q)

s.t. G(�1,… , �Q, �1,… , �Q) ≤ 0

where each �q (q = 1,… ,Q) solves

min�q fq(�q, �q)

s.t. gq(�q, �q) ≤ 0

�q ∈ Yq

Ω = {(�1,… , �Q,�1,… , �Q) ∈ X1 …× XQ × Y1 ×… × YQ ∶

G(�1,… , �Q, �1,… , �Q) ≤ 0, g(�q, �q) ≤ 0, q = 1,… ,Q}

Ω(�) = {�q ∈ Xq ∶ ∃�q ∈ Yq ∶ G(�1,… , �Q, �1,… , �Q) ≤ 0,

g(�q, �q) ≤ 0, q = 1,… ,Q}

Ωq(�q) = {�q ∶ (�q, �q) ∈ Ω}
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Finally, the inducible region ( IR ) is:

As in standard bilevel programming min and argmin have been used without loss of 
generality: each subproblem may involve maximisation.

4 � Analytics‑based heuristic decomposition approach

In this section, we first explain the Monte Carlo simulation and then we analyse two 
alternatives: k-medoids clustering and self-organising maps.

4.1 � Monte Carlo simulation

For each follower q a large number S of feasible solutions for the leader vector �q 
associated with that follower are generated, using Monte Carlo simulation. To avoid 
bias the �q are generated using Hypersphere Point Picking (Marsaglia 1972; Mul-
ler 1959), which uniformly samples from a vector space. This results in a set �sq 
( s = 1… S , q = 1…Q ). The associated follower problems are then solved using the 
�sq to obtain a corresponding set of follower vectors �sq . We now have multiple 
potential leader solutions, together with their corresponding follower solutions for 
each follower problem fq(�q, �q).

4.2 � k‑medoids clustering

In order to model and solve the BPMSIF as an Integer Linear Program (ILP), the 
large number of potential solutions �sq must be reduced to a manageable size, which 
we do via k-medoids clustering (de  Amorim and Fenner 2012). Unlike k-means 
where centroids are means of data points, k-medoids selects actual data points. Once 
the large set �sq has been clustered using K clusters, the medoids from each clus-
ter are selected to represent the large generated set. The corresponding �kq are then 
selected from �sq so that we now have a smaller representative set of assignments 
�kq and �kq . The most common algorithm for k-medoid clustering is the Partition-
ing Around Medoids (PAM) algorithm (de Amorim and Fenner 2012). This is inef-
ficient on very large datasets, so instead we use the CLARA algorithm which is a 
combination of PAM and random sampling (Kaufman and Rousseeuw 2009; Wei 
et al. 2000). The BPMSIF can now be transformed into a single-level optimisation 
problem:

Ψq(�q) = {�q ∈ Yq ∶ �q ∈ argmin fq(�q, �q) | �q ∈ Ωq(�q)}

IR = {(�1,… , �Q, �1,… , �q) ∶(�1,… , �Q, �1,… , �q)

∈ Ω, �q ∈ Ψq(�), q = 1,… ,Q}
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The constraint �q = �kq → �q = �kq ensures that if �q is assigned a value in �kq then 
�q is assigned the corresponding value in �kq . This constraint can either be line-
arised using the big-M approach, or implemented directly using CPLEX indicator 
constraints (IBM 2017).

4.3 � Self‑organising maps: an alternative to clustering

As an alternative to k-medoids clustering (which can be time consuming), a neural 
network approach is also considered. Self-organising maps (SOMs) are a type of 
artificial neural network in which, given a set of input data vectors, individual neu-
rons in the map compete to align themselves with the vectors they are best matched 
with (Kohonen 1982). SOMs operate in two phases—a training phase in which the 
map is built using sample data, and a mapping phase in which new data is auto-
matically classified based on the map built in the previous phase, with the number 
of neurons of the SOM determining the number of classes. In this paper however, 
the intention is not to use SOMs for classifying new data. Instead, the map gener-
ated by the SOM trained over the large data set is used to select a smaller but highly 
representative subset of the data. (Note that the size of the reduced set is equal to the 
number of neurons.) This is analogous to clustering (Bullinaria 2004; Lampinen and 
Oja 1992). This reduced dataset is then used to solve the bilevel optimisation prob-
lem. Figures 1, 2 and 3 give an illustration of this approach.

Starting with a 2-D lattice of neurons, as shown in Fig. 1, the map is trained on 
the underlying data. After several iterations, the map will have aligned itself with 

min�1…�Q
F(�1 … �Q, �1 … �Q)

s.t. G(�1 … �Q, �1 … �Q) ≤ 0

�q = �kq → �q = �kq (q = 1…Q, k = 1…K)

�q ∈ {�kq | k = 1…K} (q = 1…Q)

�q ∈ {�kq | k = 1…K} (q = 1…Q)

Fig. 1   SOM lattice over data
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the underlying distribution, as shown in Fig. 2. Once the map is aligned, the data 
points closest to each neuron is selected, one data point for each neuron. Figure 3 
shows a zoomed-in section of Fig. 2, with the neurons as octagonal structures and 
the selected data points in red. This reduced dataset can then be used to solve the 
transformed multiple-follower bilevel problem.

To use the SOM for clustering, i.e. reducing �sq to �kq , the number of neurons 
in the lattice is first set to K. The SOM is then trained on the �sq over several 
iterations. Once the training phase is complete, the closest follower vector to each 

Fig. 2   Map aligned with data

Fig. 3   Selection of points closest to neurons
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neuron is selected, resulting in a set �kq . Finally, the leader vectors �kq corre-
sponding to the �kq are selected, resulting in a clustered set.

5 � Numerical examples

To illustrate and evaluate our approach, we use two example problems. Monte 
Carlo simulation and clustering were done in Java and R (using the CLARA​ package 
Maechler et  al. (2017)), respectively. The CPLEX 12.6 solver was also used on a 
3.0 GHz Intel Xeon Processor with 8 GB of RAM.

5.1 � A benchmark problem

The first problem considered, a two-follower problem, is Example 2 from (Bard 
1988), and is used simply to illustrate our approach. This toy problem can be solved 
optimally with complete methods, but it is given here simply to demonstrate our 
technique (which is meant to be used in much larger problems).

This is a BPMSIF as the followers are strongly independent: the followers do not 
share each others’ follower or leader variables, and the follower problem variables 
are not mutually constrained. The leader vector � = (x1, x2, x3, x4) is partitioned 
among the followers with variables (x1, x2) occurring in follower 1 and (x3, x4) in 
follower 2. The variables �� = (y11, y12) and �� = (y21, y22) are also computed by fol-
lowers 1 and 2, respectively.

To solve this problem using the analytics-based decomposition method, denote 
(x1, x2) by a vector �1 and (x3, x4) by a vector �2 . A large number S of assignments for 
�1 and �2 which satisfy the bounds of the � ’s are generated (Marsaglia 1972; Mul-
ler 1959), and denoted by �s1 and �s2 ( s = 1… S ), respectively. For each �1 in �s1 
the corresponding follower problem �� is solved as an ILP, obtaining assignments 
�s1 ; similarly for �s2 . Next, the �s1 vectors are clustered using k-medoids to get the 
most diverse set of assignments �k1 , ( k = 1…K ). The �k1 vectors that correspond 
to the �k1 are then selected. The same is done for �s2 to obtain �k2 along with its 
corresponding �k2 . Using this decomposition, problem (3) can now be rewritten as a 
standard optimisation problem:

(3)

maxF(�, �1, �2) = (200 − y11 − y21)(y11 + y21)

+ (160 − y12 − y22)(y12 + y22)

s.t. x1 + x2 + x3 + x4 ≤ 40

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 15, 0 ≤ x4 ≤ 20

min f1(�1) = (y11 − 4)2 + (y12 − 13)2 s.t.

0.4y11 + 0.7y12 ≤ x1, 0.6y11 + 0.3y12 ≤ x2, 0 ≤ y11, y12 ≤ 20

min f2(�2) = (y21 − 35)2 + (y22 − 2)2 s.t.

0.4y21 + 0.7y22 ≤ x3, 0.6y21 + 0.3y22 ≤ x4, 0 ≤ y21, y22 ≤ 40
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where �11 = x1 , �12 = x2 , �21 = x3 and �22 = x4 . This model can be linearised 
using the big-M approach, but the ILP is solved faster when CPLEX indicator 
constraints are used.1 The binary variables uk and vk ensure that only one assign-
ment each is selected from �k1 and �k1 , and from �k2 and �k2 , respectively. The 
�11 + �12 + �21 + �22 ≤ 40 constraint ensures that an (x1, x2) and an (x3, x4) that sat-
isfy the original constraints on the � are selected.

In experiments, as K increases better solutions were found, with the highest 
value of 6594.05 obtained when K = 160 giving � = (8.13, 3.80, 11.23, 16.82) , 
�1 = (0.74, 11.20) and �2 = (28.04, 0.00) (rounded to 2 decimal places). The cluster-
ing time when K = 160 is 234.53 s. The solution is 0.09% less than optimal, but the 
strength of our approach is in its ability to handle large-scale problems, as demon-
strated next.

5.2 � A large‑scale problem

In this experiment, a problem with arbitrarily many followers is evaluated. The 
problem is also evaluated for the optimistic case in which the followers’ solutions 
lead to the best objective function value for the leader.

where 
∑

q �q�q =
∑

q

∑
n aqnxqn , � and � are the variables controlled by the leader 

and followers, respectively, and Q is the total number of followers. Both the � and 
� are vectors of real numbers. The leader variables are partitioned among the fol-
lowers such that each follower contains one �q each, and each �q is of size n. Each 
component of the vector xqn is constrained to be ≤ a given upper bound xmax

qn
 . �q , �q , 

�q , �q and �q are vectors of constants.
The decomposition approach outlined in Sect. 4 was used to decompose the prob-

lem, which is then written as:

(4)

max�(�, �1 … �2) = (200 − y11 − y21)(y11 + y21)

+ (160 − y12 − y22)(y12 + y22)

s.t. �11 + �12 + �21 + �22 ≤ 40

uk = 1 → �1 = �k1, uk = 1 → �1 = �k1 k = 1…K

vk = 1 → �2 = �k2, vk = 1 → �2 = �k2 k = 1…K∑K

k
uk = 1,

∑K

k
vk = 1

(5)

max
∑Q

q
�q�q +

∑Q

q
�q�q

s.t. �q ∈ ℝ
N q = 1…Q

xqn ≤ xmax
qn

q = 1…Q, n = 1…N

�q ∈ argmin �q�q + �q�qq = 1…Q

s.t.
∑N

n
yqn ≤

∑N

n
xqn q = 1…Q

eqnxqn ≤ yqn ≤ ymax
qn

q = 1…Q, n = 1…N

1  These are a way of expressing if-else relationships among variables (IBM 2017).
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where M is a sufficiently large constant.

5.2.1 � Evaluation

The values used for the problem are N = 6 , xmin
qn

= 0 , xmax
qn

= 10 , ymax
qn

= 10 , ( ∀q, n ). 
aqn , bqn , cqn , and dqn are Gaussian random real variables in [0.0, 15.0), [0.0, 20.0), 
[−10.0, 10.0) and [−12.0, 12.0) , respectively. eqn is a uniform random real variable 
in [0.0,  1.0). The number of followers Q was varied between 10 and 1000, and 
the problem was solved using both our analytics-based heuristic decomposition 
approach (using S = 1000 , K = 30 for each follower) and two genetic algorithms, 
and the results are shown in Figs. 4 and 5. Genetic algorithms are frequently used in 
bilevel optimisation, so this evaluation looks at the performance of this approach for 
the example problem. The first genetic algorithm is the Nested Bilevel Evolutionary 
Algorithm (N-BLEA) used in Sinha et al. (2014) and has been well-used for solv-
ing bilevel problems. The second is the Multi-Follower Genetic Algorithm (MFGA) 
described in Algorithm 1 and specifically designed for this problem.

max
∑Q

q

∑N

n
aqnxqn +

∑Q

q

∑N

n
bqnyqn

s.t. xqn − Xkqn ≤ M(1 − ukq) k = 1…K, q = 1…Q, n = 1…N

Xkqn − xqn ≤ M(1 − ukq) k = 1…K, q = 1…Q, n = 1…N

yqn − Ykqn ≤ M(1 − ukq) k = 1…K, q = 1…Q, n = 1…N

Ykqn − yqn ≤ M(1 − ukq) k = 1…K, q = 1…Q, n = 1…N∑K

k
ukq = 1 q = 1…Q

ukq ∈ {0, 1} k = 1…K, q = 1…Q
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5.2.2 � N‑BLEA parameters

In order to select the parameters to use, the problem with 100 followers ( Q = 100 ) 
was first solved while varying some algorithm parameters. The number of parents 
� and number of offspring � ( � = � ) were varied from 3–8. For each of these val-
ues, the number of generations (maxGens) was also varied from 50–200 in steps 
of 50. This operation was run 10 times for each value of � , � and maxGens, and 
the average objective value was recorded.

It was seen that the following settings produced the best solutions on average: 
� = � = 8 , number of generations maxGens = 150 , tournamentSize = 5 , num-
ber of random individuals added to pool r = 2 , crossoverProbability = 0.9 and 
mutationProbability = 0.1 . The constraint handling method used by the algorithm 
is given in Deb (2000), and the variance-based termination criteria were set to 
0.000001.

5.2.3 � MFGA parameters

These were also varied using 100 followers. The population size popSize was 
varied from 30–90, and the maximum number of generations maxGens from 
50–500. The MFGA parameters selected were therefore: maxGens = 500 , 
popSize = 50 . This population size was selected because, although there 
is little difference between its objective value and the best objective at 
popSize = 80 , the difference in time taken is almost 50% less. Uniform 
crossover with a crossover rate of 0.5 ( 50% ) was used. Other parameters 
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are elitePercentage = 0.20 , tournamentSize = 5 , mutationRate = 0.015 and 
fitnessFunction =

∑Q

q

∑N

n
aqnxqn +

∑Q

q

∑N

n
bqnyqn.

5.2.4 � Comparing all 3 approaches

For both N-BLEA and MFGA, each problem size was solved 10 times, and the aver-
age objective values and solution times were recorded. It should be noted that the 
poor performance of N-BLEA is due to the operation of its crossover operator which 
is additive in nature, and frequently violates the bounds of the vectors. This crosso-
ver operator results in offspring which are frequently infeasible, and are thus heav-
ily penalised by the constraint handling scheme. MFGA was designed to avoid this 
problem: since vector generation is done using Hypersphere Point Picking with the 
appropriate boundaries, it always produces feasible offspring.

For 10–100 followers, the solution found by the MFGA was better in 7 out of 
10 of the cases, though our approach finds a close solution in a fraction of the time 
(Fig. 4). However, as the problems get larger, (Q from 100 to 1000) our approach is 
much better in terms of both the solution quality and the runtime (Fig. 5), especially 
as Q gets larger. This demonstrates the scalability of our approach. Reduction in a 
very large set of potential solutions to a much smaller (but highly representative) 
set using medoids allows the ILP to choose the best solution from a vast number of 
possibilities.

Fig. 6   Schematic view of a forest partitioned into blocks
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6 � A large‑scale bilevel cutting stock problem

In this section we first explain the real application of forestry harvesting. Then, we 
provide its bilevel reformulation and we evaluate it.

6.1 � A multiple stock size cutting stock problem

In the classic CSP, all stock items have the same known dimensions, which makes it 
easier to compute the possible cutting patterns. In certain problems however, stock 
items come in several different dimensions and these types of problems are known 
as Multiple Stock Size Cutting Stock Problems (MSSCSP) (Wäscher et al. 2007).

An example of such a problem is the forest harvesting problem, as the trees differ 
in size from each other, sometimes significantly. In this problem, a forest is subdi-
vided into areas called “blocks”, with each block having a number of trees to har-
vest. This partitioning is illustrated in Fig. 6.

There are Q blocks each with market value Vq ( q = 1…Q ). Each block has R 
trees, with tree r ( r = 1…R ) in block q having dimensions �qr . Each tree can be cut 
into L different log types, with each log type having a particular monetary value.

This problem was classified in Climent et al. (2016) as ∗ ∕V∕D∕R (see Dyckoff’s 
typology Dyckhoff (1990)), where ∗ means any dimensionality, V means that the total 
amount of items in stock (i.e. the total number of trees) is sufficient to accommodate 
all the demanded products (hence, only some of the stock will be cut), D means that all 
large pieces (stock items) are different (in terms of shape) and R indicates many prod-
ucts of few different types are demanded. The feature V (any demand can be fulfilled) 
requires that the stock items to be cut need to first be selected. Using the more recent 
typology presented in Wäscher et al. (2007), the problem can be classified as a variant 
of the MSSCSP in which there is a heterogeneous assortment of large pieces.

In practice, a semi-autonomous harvesting machine (e.g. Komatsu forest machines) 
cuts a tree into logs in order to maximise its total value using an algorithm A , which 
is typically based on a Dynamic Programming (DP) algorithm. DP is an approach that 
enables the solution of complex problems by dividing them into a collection of simpler 
sub-problems (see Anderson et al. 2015; Bellman and Dreyfus 2015 for example). The 
sub-problems must be sequential and independent, and the problem of cutting a tree 
stem satisfies these properties since it is recursive (maximise by cutting the first product 
and then maximising the cutting of the remainder). Let L be the length of a section of a 
tree stem measured from the base of the stem, and Lmax be the total usable length of the 
stem. If yk is the length of a short log of type k cut at a distance L − yk from the base of 
the stem, and (r(yk, L) is the associated product value, this recursive relationship can be 
represented as

where f (0) = 0 and 0 ≤ L ≤ Lmax (Eng et al. 1986).
The semi-autonomous nature of the harvesting machines is due to their construc-

tion, as they are hard-coded to produce log types with the highest possible mon-
etary value wherever possible. Thus, we only have indirect control over the cutting 

(6)f (L) = maximumk,yk∈Y(L)
(r(yk, L) + f (L − yk))
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of trees via a set of L continuous variables called a weight vector � ∈ ℕ+
L . Each wl 

represents the weight (usually the price in € ∕m3 ) associated with product type l.
Blocks are sold wholesale, i.e. either a block’s trees are completely cut or none of 

its trees are cut. For each block q, a set of product types L , a vector of tree dimen-
sions �qr in the block, and a weight vector �q is passed to A . The result is a product 
vector �q ∈ ℕ+

L showing the total amount of each log type obtained from the block 
whose trees are cut, denoted by �q = ⟨a1,… , aL⟩ where al represents the volume in 
m3 of units of log type l, (l = 1…L) obtained. Consequently, A can be represented 
by the following mapping function for block q:

Solving A with fixed �q assigns values to the �q variables, and the value obtained 
from the piece is �q ⋅ �q . In some applications actual market prices are used as the 
weights. For this problem however, the �q are manipulated to obtain the desired 
product yields. This is the only control we have over how tree stems are cut due to 
the hard-coding of the harvesting machines.

Given a demand vector � denoting the desired yield Dl for each product type 
l ∈ L , the problem is to determine which blocks should be selected for harvest-
ing, as well as the weight vector to use for each such block, in order to meet the 
demands while minimising the total value of the harvested blocks to conserve natu-
ral resources. There are no restrictions on which subsets of blocks can be chosen, 
and the trees in a block are either all cut, or none of them are.

There are several approaches that aim to achieve the desired yield Dl in the litera-
ture. The authors in Kivinen (2004) and (Kivinen 2006) use genetic algorithms to 
try to improve the fit between the yields obtained by the harvester and the demand 
with varying levels of success. In Divvela and Sinha (2012), the authors use a price-
weighted apportionment degree (AD) index to try to improve the fit between output 
and demand. This approach still prioritises logs with higher value and may not fulfil 
demand, leading to overproduction of unwanted logs and consequently waste. The 
paper (Malinen and Palander 2004) uses flexible variations on the AD to improve 
the fit between demand and supply; however their approach is not guaranteed to be 
optimal. In Marshall et al. (2006), the authors provide three mathematical models 
for bucking to order using a small set of market prices, targeting certain cutting pat-
terns, and using the AD index, respectively. The paper (Kivinen et al. 2005) com-
pares four different measures to determine the similarity between the demand and 
output log distributions. None of the four are shown to be superior, even though 
they can be used in the industry to some extent. The authors in Dems et al. (2015, 
2017) use the priority list approach where higher value log types are prioritised. 
This approach also only considers a few cutting patterns which are assumed to be 
sufficient, although this is not always the case. The paper (Sessions et  al. 1989) 
adjusts the price iteratively, but using only a small set of prices. In Duffner (1980), 
the authors also vary price but how they do this is not stated.

The analytics-based heuristic decomposition approach used in this paper is a 
good fit for this problem since a much larger number of prices can be evaluated, thus 
creating a good approximation of the distribution relating the prices to the products. 

(7)A(L, ⟨�q1,… ,�qR⟩,�q) → �q
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Also, separating the harvester operation ( A ) from the rest of the linear program 
using bilevel formulation allows for the more efficient solution of problems with a 
large number of blocks. Additionally, the use of analytics approaches presents a new 
way of solving a real-world bilevel problem.

6.2 � Bilevel reformulation

The above problem can be naturally modelled as a multiple-follower bilevel opti-
misation problem. This reformulation of the forest harvesting problem as a bilevel 
problem is novel, and is one of the contributions of this paper. Here, the leader’s 
objective is to select a set of blocks to harvest to fulfil demand, while each follower 
q seeks to harvest its block to get the optimal product vector �q , given a price input 
�q.

Define binary variables hq = 1 if block q cuts its raw stock of trees, and product 
vectors of integers �qr to describe the product yields from raw r in block q’s stock. 
Vq is the monetary value of block q estimated by the forest providers. �qr are the 
dimensions of an uncut tree stem r in block q. The problem is thus:

This is a nonlinear, mixed-integer, bilevel optimisation problem with multiple fol-
lowers which we call the Bilevel Cutting Stock Problem with Multiple stock sizes 
(BCSPM). It is also large: there might be hundreds of blocks and hundreds of (sam-
pled) trees per block, hence tens of thousands or more follower problems (since A 
is evaluated for each r), as well as a large number of product types. It cannot be 
solved by classical bilevel methods but it could be tackled by evolutionary methods. 
Metaheuristic approaches (popularly used in industry) such as (Murphy et al. 2004) 
and (Dueck and Scheuer 1990) have been tried, with very poor results obtained.

The model above does not have the strong independence property because all the 
follower problems corresponding to a block share the same variables. It can however 
be transformed so that it does, by grouping each block’s follower problems into a 
single problem via new vectors of integer variables �q , which model the total yield 
from each block:

(8)

minh1…hQ,�1…�Q

∑Q

q=1
Vqhq

s.t. ∑Q

q=1

∑R

r=1
hq�qr ≥ �

where each �qr (q = 1,… ,Q) solves:

�qr ∈ argmax�qrA(L,�qr,�q) r = 1,… ,R

s.t.

hq ∈ {0, 1} q = 1,… ,Q

�qr ∈ ℕ
L q = 1,… ,Q,∀r

�q ∈ [0, 1]L q = 1,… ,Q
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Now the followers are strongly independent: each uses a unique set of variables 
�q, �q and none of the follower variables are mutually constrained. The decomposi-
tion method detailed in Sect. 4 can now be applied.

For each �q a number of feasible solutions ( �sq ) are generated. Each follower 
problem is then solved for the �sq using the cutting simulator A , to get correspond-
ing �sq . Next, k-medoids clustering is applied for each follower q, resulting in the 
selection of a diverse set of assignments �kq , together with the corresponding �kq . 
The problem can now be formulated as an ILP:

where hq = 1 indicates that all block q’s trees are cut, and xqk = 1 indicates that 
they are cut using weights with index k. If block q is not selected then hq = 0 which 
forces xqk = 0 for k = 1…K.

6.3 � Evaluation of the bilevel cutting stock problem

To empirically study the performance of our approach, real data from an industrial 
partner was used. A smaller evaluation using 8 blocks (Q = 8) with each block’s 
trees partitioned into a maximum of 4 different types of products was done in Prest-
wich et al. (2015). Results showed that the approach came to within 0.4% of opti-
mality bound (see Fig. 7). It was also seen that the total clustering time increased 
exponentially with k.

A larger evaluation was carried out on a different forest with 263 blocks ( Q = 263 ) 
and the stock partitioned into a maximum of 11 product types. The total volume of 
raw material was 6149.781m3 , with the data obtained from the industrial partner. 
1000 random weight vectors �sq , ( S = 1000 ) were generated for each block, giving 
a total of 263,000 cutting pattern vectors �sq . The total time for generating these was 

(9)

minh1…hQ,�1…�Q

∑Q

q=1
Vqhq

s.t. ∑Q

q=1

∑R

r=1
hq�qr ≥ �

where each �q (q = 1,… ,Q) solves:

�q ∈
∑R

r=1
argmax�qr A(L,�qr,�q)

s.t.

hq ∈ {0, 1} q = 1,… ,Q

�q ∈ ℕ
L q = 1,… ,Q

�q ∈ [0, 1]L q = 1,… ,Q

(10)

minh1…hQ,�1…�Q

∑Q

q=1
Vqhq

s.t. ∑Q

q=1

∑K

k=1
Pkqlxqk ≥ D1l = 1,… , L

∑K

k=1
xqk = hq q = 1,… ,Q

hq ∈ {0, 1} q = 1,… ,Q

xqk ∈ {0, 1} q = 1,… ,Q, k = 1,… ,K



686	 A. O. Fajemisin et al.

1 3

approximately 18 h and 17 min. The total clustering time for all blocks with k = 125 
was 31 h. 12 different instances of random demands were solved. In 6 of these 
instances, the demand for product types was in the range [0, 300]m3 (low demand), 
while the remaining 6 had demands in the range [300, 600]m3 (high demand). ILP 
solution times were nominal, taking less than 5 s for all instances evaluated.

Due to the high clustering times, self-organising maps (SOM) were used an alter-
native to k-medoids. The SOM experiments were done using the Java Kohonen Neu-
ral Network Library (JKNNL) Rybarski and Habdank-Wojewódzki (2006). For the 
small problem ( Q = 8 ), the SOM was trained on the 80,000 cutting pattern vectors 

Fig. 7   Percentage optimality difference (Prestwich et al. 2015)

Fig. 8   Scalability of clustering approaches for one block
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�sq , using a varying number of neurons N ∈ {25, 50, 75, 100, 125, 150, 175, 200} 
arranged in a grid topology.

A chart comparing the increase in clustering times for both k-medoids and SOM 
approaches is shown in Fig. 8.

In terms of scalability, it can be seen in Fig. 8 that using the SOM approach offers 
a significant improvement in data reduction time, which makes it more useful than 
k-medoids for large problems. In Fig. 9, when k = N = 125 for Q = 8 , the total clus-
tering times are 788.29 and 45.51 s for the k-medoids and SOM, respectively. When 
Q = 263 , the difference in clustering and map training times is even more striking 
and is better visualised using a logarithmic scale (Fig.  10). Here, the total times 
taken are 111898.35 s (31 days) and 226.72 s (4 min) for the k-medoids and SOM, 
respectively.

Fig. 9   Comparing clustering times for a small problem instance ( Q = 8),k = N = 125

Fig. 10   Comparing clustering times for a large problem instance ( Q = 263),k = N = 125
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7 � Conclusions

In this paper, a novel analytics-based heuristic decomposition approach for new 
class of bilevel multiple-follower problems is presented. Our approach can be used 
to solve large-scale multiple-follower bilevel problems more efficiently than stand-
ard approaches, as complete approaches are not practicable due to excessive compu-
tational times.

Two numerical examples were solved using this approach, and the results com-
pared to those obtained by using evolutionary algorithms (which is a standard 
approach for large-scale bilevel problems). For the first example, a toy problem is 
solved for demonstration purposes to within 0.09% of the optimal. This shows that 
even for small-scale problems, the analytics approach is competitive as it is able to 
cover the space of the follower problems adequately.

The second example was an arbitrarily large problem evaluated for up to a 
thousand followers. The results were compared with those from two evolutionary 
approaches and it was seen that as the size of the problem increased, the heuris-
tic decomposition approach produced significantly better results than the standard 
approaches. This shows that the decomposition approach is much more scalable as 
the number of followers increases, in terms of both runtime and solution quality.

Besides, a large-scale MSSCSP with applications in the forestry industry was 
evaluated. This problem was reformulated as a large-scale multiple-follower bilevel 
problem and solved using the heuristic decomposition method. Evaluation on a 
small-scale problem showed that up to a point, increasing the number of clusters got 
the solution to about 0.4% from the optimal. To reduce the clustering time required 
for large problems, self-organising maps were used as an alternative to k-medoids 
clustering with significant speed-up seen.

A possible future line of work would be the extension of the presented analytics-
based heuristic decomposition method to non-independent followers. Furthermore, 
our approach could be applied to other complex industrial applications that can be 
modelled as multi-follower bilevel problems
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