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a b s t r a c t

This paper considers a type of biobjective bilevel programming problem, which is derived
from a single objective bilevel programming problem via lifting the objective function at
the lower level up to the upper level. The efficient solutions to such a model can be con-
sidered as candidates for the after optimization bargaining between the decision-makers
at both levels who retain the original bilevel decision-making structure. We use a popu-
lar multiobjective evolutionary algorithm, NSGA-II, to solve this type of problem. The al-
gorithm is tested on some small-dimensional benchmark problems from the literature.
Computational results show that the NSGA-II algorithm is capable of solving the prob-
lems efficiently and effectively. Hence, it provides a promising visualization tool to help
the decision-makers find the best trade-off in bargaining.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The bilevel programming problem (BLPP) [1,2] is an optimization problem arising from hierarchical decision-making. It
is equivalent to a static two-person Stackelberg game where the upper level decision-maker (the leader) and the lower
level decision-maker (the follower) pursue individual objectives in a non-cooperative manner and subject to a set of
interdependent constraints. In a BLPP, the set of decision variables is partitioned between two vectors x and y, and the
decisions are taken sequentially. The leader goes first by selecting x and then the follower replies on this decision by solving
an optimization problem parameterized in x. The optimal solution y(x) is then returned to the leader as the follower’s
rational reaction on x. On the basis of the reactions of the follower, the leader has now to optimize his single or multiple
objective functions over his decision vector x. A BLPP is called single objective if the leader and the follower both have a
single objective; otherwise, it is called multiobjective. A BLPP is linear if all functions involved are linear.
A BLPP is generally non-convex and non-differentiable and thus intrinsically hard to solve. Due to the intractability of

the BLPPs, evolutionary algorithms (EAs) [3,4] have found great interest in the past years as approximation methods for
BLPPs. Evolutionary algorithms represent a large class of heuristic techniques based on the natural selection principle, with
genetic algorithms (GAs) being amongst the most widely known. In most EAs, a population of solutions evolves from one
generation to the next through the application of selection and variation, namely mutation and/or crossover, operators.
Since EAs do not need specific information to guide the search, they can be applied in a wide variety of domains. Moreover,
being population-based search strategies, they are naturally suited for the extension into the multiobjective optimization
problem domain, and allow finding an entire set of approximate Pareto-optimal (efficient) solutions in a single execution of
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the algorithms. To date, many multiobjective evolutionary algorithms (MOEAs) have been proposed [5,6], and among them
is NSGA-II, which has been successfully applied to a wide range of problems [5,7].
Applications of EAs to single objective BLPPs have been seen in the last decade. The existing evolutionary approaches

for solving BLPPs can be roughly subdivided into three classes: Kurash–Kuhn–Tucker (KKT) methods, direct methods and
vertex enumeration methods (for linear BLPPs only). The KKT approaches replace the lower level problem of a BLPP with
its KKT optimality conditions, thus yielding a usual single level problem with complementary conditions in the constraints.
This problem is then solved by developed EA-based algorithms. [8] further introduced 0–1 variables with respect to the
complementary conditions. A GAwas developed to solve the resultant single level linear mixed 0–1 programming problem.
For nonlinear BLPPs, [9] designed an EA to solve the derived single level problemby incorporating a new constraint-handling
method and a problem-specific crossover operator.
The second class of approaches directly solve the lower level programming problems with conventional optimization

methods, or even also by using EAs if the problem is complicated enough. [10] developed a GA for linear BLPPs in which only
mutation is used. [11] considered a BLPPwithmultiple followers, instead of the one-leader one-follower type of BLPP studied
in this paper. For the lower level problem, a response solution known as the Nash equilibrium was solved for all followers
by an iterative method or a designed GA. The GA was also used for solving the Stackelberg–Nash equilibrium for the type of
BLPP considered. Thismodel was extended to a fuzzy BLPPwith fuzzy parameters in objective functions and constraints, and
the new model was solved by a GA combined with fuzzy simulation and a neural network, where the GA was also applied
for finding the followers’ Nash equilibrium [12]. [13] developed a genetic approach called GAB to solve a BLPP describing a
decision-making problem for transportation system planning and management. [14] proposed a co-evolutionary algorithm
with the use of a BLPP, where dual populations were used to solve the upper and lower problems iteratively.
The vertex enumeration methods developed for linear BLPPs utilize the fact that an extreme point of the constraint

region of a BLPP, a polyhedron, is an optimal solution to that BLPP. [15] developed a GA in which each solution was coded as
a string representing a bilevel feasible extreme point. Aiming at combining classical extreme point enumeration techniques
with genetic search methods, [16] designed a genetic procedure by associating solution codings with extreme points of the
constraint region.
In a BLPP from the transportation decision-making domain, the leader usually needs to simultaneously considermultiple

objectives since she has several aims and social concerns. MOEAs have been applied to solve this kind ofmultiobjective BLPP
in which multiple objectives are considered at the upper level by the leader. [17] is concerned with general multiobjective
BLPPs in transportation systems, and a numerical experiment was conducted on a biobjective BLPP arising from transporta-
tion network design. [18] formulated a type of network design problemwithmultiple objectives under demand uncertainty
as a stochastic BLPP. In particular, twomean–variance biobjective models were derived, for which the stochastic simulation
to simulate the uncertainty of demands was needed. In all these biobjective BLPPs concerning network design, the lower
level problem is a traffic assignment problem solvable by standard methods. Both MOEAs developed in these two works
combined a distance-based method for handling multiple objectives [19] with some single objective GA, in particular GAB
for the algorithm developed in [13]. Case studies showed that these two MOEAs were efficient in simultaneously searching
the efficient solutions, and that they performed better than some conventional methods.
The hierarchical characteristics in bilevel decision-making allow the leader to partially dominate the follower; thereby

the leader would pursue her optimal solution regardless of, and often at the cost of, the follower’s payoff during the sequen-
tial play in the BLPP. Thus the follower may often be unsatisfied with the final solution achieved on behalf of the leader, and
some type of bargaining may take place between both sides after the optimization process. In this study, we assume that
the original bilevel decision-making structure is retained: both sides have no motivation to cooperate with each other, and
the hierarchical framework is strictly enforced. In such a situation, the candidate solutions for bargaining can be regarded as
the efficient solutions to a specific biobjective BLPP derived from the BLPP under consideration. The model is formed simply
through lifting the follower’s objective function up to the upper level to constitute a biobjective problem for the leader. This
model corresponds to the scenario that the leader takes into account the follower’s profit while seeking to optimize her
own objective, and the efficient trade-offs of both sides’ objectives are considered as candidate solutions for the bargaining
which ends at a compromise solution that is satisfactory to both sides.
In this study, we applied NSGA-II to solve the proposed type of biobjective BLPP. The obtained approximation to the

efficient set can provide a sound foundation for non-cooperative posterior bargaining.
The rest of this paper is organized as follows. In Section 2 we give the formulation of the models and related definitions.

Section 3 presents a description of NSGA-II applied to the proposed models. Computational results are given in Section 4.
We conclude in Section 5.

2. Problem formulation

2.1. General multiobjective programming problem

A general multiobjective programming problem (MOPP) can be written as

min f (z) = (f1(z), . . . , fm(z))
s.t. z ∈ X, (1)
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where z = (z1, . . . , zn) is the decision (variable) vector, fk(z) (1 ≤ k ≤ m) is the objective function, and f (z) =
(f1(z), . . . , fm(z)) is called the objective vector. X ⊆ Rn is the feasible set of the problem. Any decision vector in X is called
feasible.

Definition 1. For two decision vectors z1, z2 ∈ X , z1 is said to dominate z2, denoted by z1 � z2, if fk(z1) ≤ fk(z2) for any
k ∈ {1, . . . ,m} and f (z1) 6= f (z2).

Definition 2. The decision vector z∗ ∈ X is said to be nondominated regarding a set X ′ ⊆ X if any z ∈ X ′ does
not dominate z∗. When X ′ = X , z∗ is called Pareto-optimal or efficient. The set N of all nondominated (resp. efficient)
decision vectors regarding X ′ (resp. X) is called the nondominated (resp. efficient) set, and its image in the objective space
f (N) = {f (z)|z ∈ N} is called the nondominated (efficient) front or in short NDF (EF).

2.2. Bilevel models

A general (continuous) BLPP can be expressed mathematically as follows:

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0,
min
y

f (x, y)

s.t. g(x, y) ≤ 0,

(2)

with x ∈ Rnx , y ∈ Rny , F , f : Rnx+ny → R,G : Rnx+ny → Rp, g : Rnx+ny → Rq. x (resp. y) is called the vector of the upper
(resp. lower) level decision variables, F (f ) the upper (lower) level objective function, and G ≤ 0 (g ≤ 0) the upper (lower)
level constraints.
For each x taken by the leader, let Y (x) denote the solution set of the lower level problem or the follower’s problem:

min
y

f (x, y)

s.t. g(x, y) ≤ 0.
(3)

Y (x) is also known as the rational reaction set of the follower for fixed x. If Y (x) is not a singleton, i.e. the minimal solution
of (3) is not unique, a common procedure is the so-called optimistic approach in which the minimal solution minimizing
F(x, y) (for a fixed value of x) is assumed to be returned to the upper level as the response of the lower level to the given
x [2].
Denote the constraint region of (2) by S = {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0}. The feasible set, also known as the induced

region, of (2) is defined as IR = {(x, y) : (x, y) ∈ S, y ∈ Y (x)}. Here it is always assumed that a unique y ∈ Y (x) is determined
with the optimistic approach when Y (x) is not a singleton.

Definition 3. A point (x, y) is said to be feasible to (2) if (x, y) ∈ IR. A feasible solution (x∗, y∗) is said to be an optimal
solution to (2) if F(x∗, y∗) ≤ F(x, y) for any (x, y) ∈ IR. F(x∗, y∗) is called the optimal value for (2).

The general biobjective model associated with (2) can be used to describe the decision-making process if the sequential
decision-making structure in (2) is abandoned, and both sides have a desire to cooperate:

min
x,y

(F(x, y), f (x, y))

s.t. G(x, y) ≤ 0,
g(x, y) ≤ 0.

(4)

S is now the feasible set of the biobjective problem (4).
No simple relationship between the solutions to (2) and those for (4) exists even in the simple case of linear bilevel

programming [20]. [21] has introduced an order relation such that the optimal solutions to (2) are the nondominated points
with respect to the order relation and reposed (2) as amultiobjective programming problemwith four criteria, two of which
are the objective functions of the upper and lower level, respectively.
For the after optimization bargaining in which the hierarchical decision-making structure is retained and both sides act

uncooperatively, the efficient solutions to the next biobjective model (5) would serve as good candidates. The model can be
derived from (2) by adding the lower level objective function f up to the upper level:

min
x,y

(F(x, y), f (x, y))

s.t. G(x, y) ≤ 0,
min
y

f (x, y)

s.t. g(x, y) ≤ 0,

(5)

and the general Definitions 1–3 apply to model (5) when takingm = 2 and X = IR.
Several simple conclusions follow from the definitions and model formulations: (1) any solution in the efficient set of

(5) is dominated by or equal to at least one efficient solution to (4), while any efficient solution to (4) cannot be dominated
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by any solution to (5); (2) the optimal solution to (2), (x∗, y∗), is also an efficient solution to (5) with minimum F-value
F(x∗, y∗) among all efficient solutions; thus (F(x∗, y∗), f (x∗, y∗)) is identical to an extreme point of the EF; and (3) in such a
non-cooperative bargaining process, the follower can only improve her payoff while the leader loses during bargaining.
Some cooperative bargaining models have been proposed [22,23]. These models aimed at finding a class of efficient

solutions to model (4) from the currently obtained solution to BLPP (2). In contrast to the situation of non-cooperative
bargaining, both sides could then benefit from the bargaining. However, this model may not apply to at least the cases when
cooperation is not allowed or impossible.
Because preferences of the decision-makers are generally unknown in advance, it would be more advantageous to show

the decision-makers a good representative sample of the whole EF from which they can choose the final compromise
solution. The weighted sum method, one of the most common approaches for solving general MOPPs, can trace out part
of the EF of model (5) by solving the parametric problem (6) with varying weight λ ∈ [0, 1]:

min
x,y

λ · F(x, y)+ (1− λ) · f (x, y)

s.t. G(x, y) ≤ 0,
min
y

f (x, y)

s.t. g(x, y) ≤ 0.

(6)

Two recognized drawbacks of this method, to be illustrated in Section 4, are that, if the EF is not convex, there does not exist
any weight λ for which the solution to problem (5) lies in the non-convex part, and that, even if the EF is convex, an even
spread of weight λ does not produce an even spread of points on the EF [24].
Since the NSGA-II algorithm proves an efficient optimizer for MOPPs, we applied NSGA-II to solve model (5). In addition,

it was also used for solving (4) to obtain a nondominated solution set comprising a large number of points, contrary to the
solution set given in [22,23] with atmost several points. All the results associatedwith bothmodels can supply the decision-
makers with sufficient trade-off information for posterior bargaining. Both sides could then choose a point on the EF of (5)
as the final compromise solution if they insist on the original bilevel decision-making structure. Instead, if they decide to
act cooperatively, they would attain improvements for both sides by locating the bargaining solution along the EF of (4).

3. The multiobjective evolutionary algorithm: NSGA-II

3.1. Introduction to NSGA-II

For a general MOPP, a powerful MOEA aims at finding a nondominated solution set regarding all solutions examined in
a single run such that the associated NDF is a good approximation of the true EF. The goal is two-sided: the NDF obtained
should be as close as possible to the true EF, while being as diverse as possible. To achieve this goal, NSGA-II introduces some
components to be briefly described next. The reader can refer to [5,7] for details.
The partial relation ≺c is defined for the general situation when a constrained MOPP is solved by NSGA-II. A problem-

specific overall constraint violation is defined to measure the degree of constraint violation for any solution in the search
space. Then a decision vector x is said to constraint dominate vector y, written as x≺c y, if any of the following conditions is
true: x is feasible and y is not; both solutions are infeasible, but x has smaller overall constraint violation; or, both solutions
are feasible, and x � y. The≺c relation also serves as a simple yet efficient constraint handling method by always favoring
feasible solutions over infeasible ones, or less constraint violated solutions over more constraint violated ones [5,7].
Based on ≺c , a nondominated sorting process first successively partitions the current solution set (population) P into

different nondominated fronts Fk, k = 1, . . . , nk. Each individual i in Fk is assigned a nondomination rank value irank = k. In
NSGA-II, an efficient sorting process called the fast nondominated sorting approach is implemented. Second, the crowding
distance (idistance) is assigned for any individual i in P front by front, estimating the density of solutions in the same
nondominated front Fk surrounding i. The smaller the crowding distance of an individual, the more crowded by other
solutions it is regarded as being.
On the basis of these two attribute values assigned to each individual, the crowded comparison operator ≺n can then

be defined to compare any pair of individuals i and j: i is said to ≺n-dominate j, denoted by i≺n j, if either irank < jrank, or
(irank = jrank ∧ idistance < jdistance). By favoring the solutions with lower domination rank, the algorithm gradually drives the
population towards the true EF. Meanwhile, the diversity in population is preserved to ensure a good spread of solutions by
preferring the solutions with smaller crowding distance.
The framework of NSGA-II is given below. An initial population P0 of size np is created randomly and for each individual

i ∈ P0, irank and idistance are calculated. P0 is considered as the current parent population, and each iteration of the main loop
starts. In each generation t ≥ 0, for the current parent population Pt , the binary tournament selection strategy repeatedly
selects one winner (parent) regarding≺n from each pair of two randomly selected individuals until all np parents have been
selected. These parent individuals are then paired randomly. With crossover probability pc , each pair is recombined by the
crossover operator to create two child individuals: the newly created child individuals enter the offspring population Qt
if crossover happens; otherwise the two parents are retained in Qt . Then each individual in Qt undergoes a mutation by
the mutation operator with mutation probability pm. Afterwards, Pt and Qt are combined to form the population Rt with
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size 2np. Rt is then sorted into nondominated fronts and the crowding distance is computed for each individual. The t-th
generation ends by selecting the better half from Rt to create the parent population Pt+1 for the next generation. Based on
≺n, this population reduction can be carried out by selecting the Fks from k = 1 in sequence, until the last selected front
Flast causes no fewer than np solutions included in all selected fronts. If the population size is more than np, Flast is sorted by
≺n and then truncated by keeping the better solutions to ensure the size np for the new population. The whole evolutionary
process is repeated until some predefined stopping criterion is satisfied.
NSGA-II framework
1: Set all algorithmic parameters and set t = 0
2: Generate initial population P0 randomly
3: Evaluate population P0
4: Calculate (irank, idistance) for each individual i in P0
5: Repeat
6: Select parent individuals from Pt
7: Apply crossover operator to parents and create population Qt
8: Apply mutation operator to each individual in Qt
9: Evaluate Qt
10: Combine Qt and Pt to create Rt
11: Calculate (irank, idistance) for each individual i in Rt
12: Select better half of Rt to generate Pt+1
13: t = t + 1
14: Until the stopping criterion is met

3.2. Algorithmic components

Some algorithmic components for the adaptation of NSGA-II to solve (5) are listed below. The detailed description of
applying NSGA-II to the MOPP (4) can be found in [5,7].
Solution representation and initialization: Each individual is coded as a real vector x of dimension n, naturally representing a
decision vector of the leader. The initial population P0 is generated by random initialization of every individual x in which
its i-th component xi is drawn uniformly at random from [ai, bi], where ai and bi are, respectively, upper and lower bound
of xi.
Crossover and mutation operators: The SBX operator is used for recombination and a polynomial distribution for mutation.
These two operators are efficient in solving continuous optimization problems [5].
Fitness evaluation: For any given individual x, solve the follower’s problem (3) to obtain the solution y(x). The pair (F(x,
y(x)), f (x, y(x))) is then evaluated as the vector of fitness values at x.
Overall constraint violation: Suppose G(x, y) = (G1(x, y), . . . ,Gp(x, y)), where Gi is a linear or nonlinear function. The overall
constraint violation value of an individual x is then defined as

∑p
i=1max{Gi(x, y(x)), 0}.

4. Computational experiments

4.1. Experimental settings

In this section, we present numerical results obtained on a set of test problems taken from [9]. [9] collected some single
objective nonlinear benchmark BLPPs published in the literature, along with best-known solutions. The problems tested
here, i.e. test problems 1–9, 11–14 as given in [9], include all the one-leader one-follower BLPPs with linear or quadratic
programming (QP) problems at the lower level. In addition, we also used a linear BLPP considered in [22,23], and call it
problem 0 herein. Due to space limitation, only problems 0 and 1 are described below. Readers can refer to [9] for more
information about the problems and the best-known solutions.
Problem 0:
min
x,y

F(x, y) = 2x− 11y

s.t. x ≥ 0
min
y

f (x, y) = x+ 3y

s.t. x− 2y ≤ 4, 2x− y ≤ 24, 3x+ 4y ≤ 96,
x+ 7y ≤ 126, −4x+ 5y ≤ 65, x+ 4y ≥ 8, y ≥ 0.

Problem 1:
min
x,y

F(x, y) = (x1 − 30)2 + (x2 − 30)2 − 20y1 + 20y2
s.t. x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15

min
y

f (x, y) = (x1 − y1)2 + (x2 − y2)2

s.t. 0 ≤ y1 ≤ 10, 0 ≤ y2 ≤ 10.
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Table 1
Computational results of running NSGA-II for model (2).

Problem Best Worst Average Standard Best-known CPU time

0 −85.090909 −85.085072 −85.090176 0.001323 −85.09 1.26
1 225.000763 225.000769 225.000764 0.000012 225 3.15
2 0.000001 0.000258 0.000007 0.000079 0 1.95
3 −12.678845 −12.671539 −12.678704 0.001033 −12.68 3.56
4 −29.200000 −29.198675 −29.199793 0.000317 −29.2 1.27
5 −8.917289 −8.917289 −8.917289 0.000000 −8.92 1.65
6 −7.578566 −7.577840 −7.578460 0.000164 −7.58 2.84
7 −11.998518 −11.998501 −11.998514 0.000006 −11.999 3.76
8 −3.600028 −3.599793 −3.599916 0.000087 −3.6 8.34
9 −3.920006 −3.919564 −3.919926 0.000000 −3.92 5.95
11 1000.0000 1000.0000 1000.0000 0.000000 1000 0.17
12 81.327853 81.327853 81.327853 0.000000 81.3279 0.58
13 100.00000 100.00234 100.00045 0.000634 100.0001 0.88
14 −1.209877 −1.209808 −1.209863 0.000018 −1.2098 1.48

In order to assess the results of multiple runs of NSGA-II, we used two performance indicators, namely the hypervolume
indicator IH and the unary epsilon indicator I1ε , which are recommended as proper performance measures of MOEAs in
practice [25]. Performance assessing is usually done on the NDFs generated byMOEAs. The hypervolume indicator of an NDF
Z , IH(Z), for a biobjective problem, is equal to the summation of all the areas of rectangles enclosed by each of the points in
Z and a chosen reference point p. Here z < p for any z ∈ Z . We further use the hypervolume ratio (HR) as an indicator to
assess the performance: for a given reference efficient front (REF) Rwhich is considered as a good approximation set of the
true EF, define HR(Z) = IH (Z)

IH (R)
. Thus, larger HR values generally indicate better NDFs.

For a given REF R and an NDF Z , the unary epsilon indicator value I1ε (Z) is defined as

I1ε (Z) = inf
ε∈R
{∀v ∈ R ∃ u ∈ Z : ∀i ∈ {1, . . . ,m}ui ≤ ε · vi}. (7)

It gives the minimum factor ε such that, for each point in R, when multiplied by ε, the resulting transformed point is
dominated by at least one point in Z . By definition, a lower ε is preferred.
We created theREF for eachproblem instance as follows [25]: runningNSGA-IIwith larger population size (np = 400) and

longer evolution process (gen = 800) independently for 5 times; merging nondominated sets from all runs and removing
all dominated solutions. The image of the remaining nondominated solutions is then considered as the REF used in the
evaluation of HR and I1ε indicators. It is seen in Figs. 2 and 3 that such an REF can be regarded as a good approximation of the
true EF.
Normalized objective values were used. After scaling, the objective values all lie in the interval [0, 1], and p = (2, 2)

is always chosen as the reference point [25]. With respect to the calculation of indicator values, including the scaling
and normalizing of objective values, we used corresponding tools taken from the tool environment based on the Platform
and Programming Language Independent Interface for Search Algorithms PISA [26], which supplies all necessary tools for
performance assessment of multiobjective optimizers.
The algorithm was coded in C and run on an Intel Pentium IV 2.93 MHz PC with 1 GB RAM under Windows XP. The

development of programs was based on the NSGA-II C code available from Deb’s KANGAL web page. The standard simplex
algorithm and an approach based on the Frank–Wolfemethod [27]were used to solve the follower’s linear and QP problems,
respectively. These two approaches were also coded in C and embedded in the NSGA-II program. In all experimental
simulations, we set pc = 0.95 and pm = 0.2.

4.2. Computational results

To demonstrate the efficiency of NSGA-II, we first used it to solve the original single objective BLPP model (2), which can
be considered as a reduced case of an MOPP. The codes developed could be implemented without modification, except for
setting the single objective function. The algorithm was run 50 times independently on each test instance with np = 100
and gen = 200, using different randomnumber seeds. Table 1 presents the statistical results of the 50 best F-values obtained
in all runs for a problem. In addition, the best-known F-value and the average CPU time in seconds for each instance are
also displayed. All these results indicate that NSGA-II is able to generate competitive solutions to best-known results on
all test problems, in a reasonable time of computation. Moreover, its performance is robust since all the observed standard
deviations are quite small.
In the same way, NSGA-II was applied to trace out the EFs of model (4) by running it 1000 times to solve the weighted

single objectivemodel (6) with different λ = k
1000 , k = 0, . . . , 1000. Because of the steady and good performance of NSGA-II

demonstrated in Table 1, the solutions obtained can be seen as good candidates for true efficient solutions.
Table 2 gives a summary of the results of applying the indicators HR and I1ε to the 50 independent runs of NSGA-II for

model (5) for each test instance. The algorithmic setting used here is np = 100 and gen = 200. For each of problems 3, 7, 11
and 13, there was one single efficient solution found. This indicates that the objectives at both levels are not conflicting for
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Table 2
Computational results of running NSGA-II for model (5).

Problem HR I1ε CPU time
Avg. Std. Avg. Std.

0 0.992274 0.000358 1.006585 0.001101 1.43
1 0.988194 0.010667 1.030119 0.032766 1.75
2 0.999594 0.000088 1.002913 0.000692 12.43
4 0.991241 0.000453 1.009477 0.001762 1.14
5 0.991684 0.000416 1.010850 0.001973 1.20
6 0.991432 0.000428 1.010738 0.002147 2.33
8 0.992865 0.000639 1.006345 0.001883 4.76
9 0.975328 0.005398 1.059657 0.015966 8.05
12 0.991697 0.000415 1.010752 0.002070 0.84
14 0.983236 0.000927 1.021235 0.004396 16.56

Table 3
Results of minimum F-values found in solving model (5) with NSGA-II.

Problem Best Worst Avg. Std. Best-known

0 −85.090813 −85.073409 −85.085193 0.004850 −85.09
1 225.045684 231.219198 227.285323 4.036734 225
2 0.000012 0.000088 0.000036 0.000054 0
4 −29.199894 −29.185309 −29.197406 0.002955 −29.2
5 −8.917289 −8.917209 −8.917264 0.000057 −8.92
6 −7.578557 −7.574339 −7.577402 0.001052 −7.58
8 −3.596280 −3.591434 −3.594367 0.003028 −3.6
9 −3.914242 −3.891611 −3.904327 0.005192 −3.92
12 81.327853 81.329366 81.327945 0.000228 81.3279
14 −1.209877 −1.209765 −1.209804 0.000787 −1.2098
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(a) NDFs for model (5). (b) NDF for model (4).

Fig. 1. NDFs obtained with NSGA-II on problem 0.

these problems, and they are omitted from the table. Very good performance in terms of both indicators can be observed
from the table, and it is evident that both indicators have small variation, suggesting a reliable performance of the algorithm.
Moreover, the mean CPU time is less than 20 s in all instances, while being less than 3 s for 6 out of 10, for a single run of
NSGA-II to compute a good approximation EF.
Table 3 summarizes the results of those minimum F-values found in 50 runs of NSGA-II for biobjective model (5).

The results prove again that NSGA-II is competitive to single objective optimizers regarding quality of solutions and
computational efficiency. They also indicate the robustness of NSGA-II, since except for problem 1, the standard deviations
are all rather small.
Figs. 1 and 2 show the NDFs obtained for problems 0 and 1. The left box in each figure shows the NDFs resulting from

two typical runs of NSGA-II for model (5), with different settings: np = 100, gen = 200 and np = 400, gen = 800. They
are denoted by NDF1 and NDF2, respectively. The point corresponding to the best-known solution is also depicted (with the
symbol ‘‘4’’). The NDF obtained for model (4) with setting ps = 400, gen = 800, denoted by NDF3, is shown in the right
box, with NDF2 alongside for comparison. In addition, in Fig. 1, for problem 0, the approximate solutions to (4) given in [22]
are also plotted in the objective space (with the symbol circle).



M. Li et al. / Computers and Mathematics with Applications 59 (2010) 706–715 713

200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

F

f
NDF1
NDF2

100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

F

NDF2
NDF3

f
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Fig. 2. NDFs obtained with NSGA-II on problem 1.

200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

F

f

Fig. 3. Approximate EF obtained for model (5) with the weighted sum method on problem 1.

As indicated by the results of indicators in Table 2, every NDF1 is found to be a good representation of NDF2 in terms of
both closeness and extension properties, meaning that we can get a good approximation of the EF in a shorter time. It is also
easy to see that all the points from [22] lie exactly on the obtained front NDF3. Thus, NSGA-II is more advantageous to the
decision-makers, since they can now make the choice from the approximate set to the whole EF, rather than being content
with just some points thereon.
It can be observed that NDF2 is concave in the middle part for problem 1, and entirely concave for problem 0 with an

isolated rightmost point. Due to the good performance of NSGA-II demonstrated in the results above, we believe that the
true EFs would take on the same shape as NDF2. When applied to model (6), the weighted sum method was found to be
highly susceptible to the shape of EF in that it could not trace out the concave part of the EF, as illustrated in Fig. 3, which
shows the approximate EF for problem 1 obtained after 1000 runs of the algorithmwith different λ. For problem 0, only the
leftmost and rightmost points of the EF were found in all runs. Compared to the weighted summethod, NSGA-II is much less
sensitive to the EF’s shape and it is able to approximate the EF completely in a single run, a fact reflected by the plots of NDFs
in Figs. 1 and 2. The approximate EF in Fig. 3 overlaps so highly with the front NDF2 in Fig. 2 that we plot them separately
in different figures; however, to achieve the results shown here, it took the weighted sum method over 1500 s of CPU time
while NSGA-II spent only less than 50 s. This fact strongly suggests the effectiveness and efficiency of NSGA-II.
It is interesting to note that, in Fig. 1, the isolated rightmost point of NDF2 locates exactly on NDF3. Fig. 2 shows that

some points in NDF3 are approximated by mostly identical or at least very close points of NDF2. Extensive computational
experiments showed that this phenomenon can also be seen for some other problems. For example, for problem 9, the
majority ofNDF2 coincideswithNDF3, as shown in Fig. 4. Based on all such resultswe guess that for a broad class of problems,
some efficient solutions to model (5), in particular those with relatively larger F-values, also belong to the efficient set of
model (4). This is worth further theoretical research.
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Fig. 4. NDFs obtained for models (4) and (5) with NSGA-II on problem 9.

5. Conclusion

We have considered a biobjective bilevel model derived from the original single objective BLPP by adding the follower’s
objective function up to the upper level. The efficient solution set of this model can be supplied to the decision-makers at
both levels, who agree to bargain after optimization while keeping the hierarchical decision structure of the BLPP and acting
uncooperatively, as candidates for the final compromise solution to choose from. NSGA-II has been used to solve this model.
Computational results on some published low-dimensional test problems show that NSGA-II can effectively generate a good
approximation efficient set in each run.
Although we have mainly focused on the special class of biobjective BLPPs, it is clear that NSGA-II (and other MOEAs)

can be applied without modification to solve a general BLPP with multiple objectives considered by the leader at the upper
level. Moreover, the algorithm can be extended to solve other types of BLPP, such as integer, 0–1, or mixed-integer BLPPs,
through adopting a problem-specific representation scheme. These will leave as future research.
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