13,749 research outputs found

    An Iterative Cyclic Algorithm for Designing Vaccine Distribution Networks in Low and Middle-Income Countries

    Full text link
    The World Health Organization's Expanded Programme on Immunization (WHO-EPI) was developed to ensure that all children have access to common childhood vaccinations. Unfortunately, because of inefficient distribution networks and cost constraints, millions of children in many low and middle-income countries still go without being vaccinated. In this paper, we formulate a mathematical programming model for the design of a typical WHO-EPI network with the goal of minimizing costs while providing the opportunity for universal coverage. Since it is only possible to solve small versions of the model optimally, we describe an iterative heuristic that cycles between solving restrictions of the original problem and show that it can find very good solutions in reasonable time for larger problems that are not directly solvable.Comment: International Joint Conference on Industrial Engineering and Operations Management- ABEPRO-ADINGOR-IISE-AIM-ASEM (IJCIEOM 2019). Novi Sad, Serbia, July 15-17t

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs

    Evolutionary multiobjective optimization of the multi-location transshipment problem

    Full text link
    We consider a multi-location inventory system where inventory choices at each location are centrally coordinated. Lateral transshipments are allowed as recourse actions within the same echelon in the inventory system to reduce costs and improve service level. However, this transshipment process usually causes undesirable lead times. In this paper, we propose a multiobjective model of the multi-location transshipment problem which addresses optimizing three conflicting objectives: (1) minimizing the aggregate expected cost, (2) maximizing the expected fill rate, and (3) minimizing the expected transshipment lead times. We apply an evolutionary multiobjective optimization approach using the strength Pareto evolutionary algorithm (SPEA2), to approximate the optimal Pareto front. Simulation with a wide choice of model parameters shows the different trades-off between the conflicting objectives

    Robust Dynamic Cooperative Games

    Get PDF
    Classical cooperative game theory is no longer a suitable tool for those situations where the values of coalitions are not known with certainty. Recent works address situations where the values of coalitions are modelled by random variables. In this work we still consider the values of coalitions as uncertain, but model them as unknown but bounded disturbances. We do not focus on solving a specific game, but rather consider a family of games described by a polyhedron: each point in the polyhedron is a vector of coalitions’ values and corresponds to a specific game. We consider a dynamic context where while we know with certainty the average value of each coalition on the long run, at each time such a value is unknown and fluctuates within the bounded polyhedron. Then, it makes sense to define “robust” allocation rules, i.e., allocation rules that bound, within a pre- defined threshold, a so-called complaint vector while guaranteeing a certain average (over time) allocation vector. We also present as motivating example a joint replenishment application

    An optimal approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    We propose a method that can be used when deciding on how to maintain capital goods, given a product design and the layout of a repair network. Capital goods are physical systems that are used to produce products or services. They are expensive and technically complex and have high downtime costs. Examples are manufacturing equipment, defense systems, and medical devices

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    An approximate approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    For the spare parts stocking problem, generally METRIC type methods are used in the context of capital goods. A decision is assumed on which components to discard and which to repair upon failure, and where to perform repairs. In the military world, this decision is taken explicitly using the level of repair analysis (LORA). Since the LORA does not consider the availability of the capital goods, solving the LORA and spare parts stocking problems sequentially may lead to suboptimal solutions. Therefore, we propose an iterative algorithm. We compare its performance with that of the sequential approach and a recently proposed, so-called integrated algorithm that finds optimal solutions for twoechelon, single-indenture problems. On a set of such problems, the iterative algorithm turns out to be close to optimal. On a set of multi-echelon, multi-indenture problems, the iterative approach achieves a cost reduction of 3%on average (35%at maximum) as compared to the sequential approach. Its costs are only 0.6 % more than those of the integrated algorithm on average (5 % at maximum). Considering that the integrated algorithm may take a long time without guaranteeing optimality, we believe that the iterative algorithm is a good approach. This result is further strengthened in a case study, which has convinced Thales Nederland to start using the principles behind our algorithm

    Supply chain collaboration

    Get PDF
    In the past, research in operations management focused on single-firm analysis. Its goal was to provide managers in practice with suitable tools to improve the performance of their firm by calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets and increased competition among firms. Further, more and more products reach the customer through supply chains that are composed of independent firms. Following these trends, research in operations management has shifted its focus from single-firm analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply chains under decentralized control. The main characteristics of such chains are that the firms in the chain are independent actors who try to optimize their individual objectives, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain. These interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game theory, the study of situations of cooperation or conflict among heterogenous actors, is very well suited to deal with these interactions. This has been recognized by researchers in the field, since there are an ever increasing number of papers that applies tools, methods and models from game theory to supply chain problems

    A single buyer-single supplier bargaining problem with asymmetric information : theoretical approach and software implementation

    Get PDF
    This paper is focused on the coordination of order and production policy between buyers and suppliers in supply chains. When a buyer and a supplier of an item work independently, the buyer will place orders based on his economic order quantity (EOQ). However, the buyer s EOQ may not lead to an optimal policy for the supplier. It can be shown that a cooperative batching policy can reduce total cost significantly. Should the buyer have the more powerful position to enforce his EOQ on the supplier, then no incentive exists for him to deviate from his EOQ in order to choose a cooperative batching policy. To provide an incentive to order in quantities suitable to the supplier, the supplier could offer a side payment. One critical assumption made throughout in the literature dealing with incentive schemes to influence buyer s ordering policy is that the supplier has complete information regarding buyer s cost structure. However, this assumption is far from realistic. As a consequence, the buyer has no incentive to report truthfully on his cost structure. Moreover there is an incentive to overstate the total relevant cost in order to obtain as high a side payment as possible. This paper provides a bargaining model with asymmetric information about the buyer s cost structure assuming that the buyer has the bargaining power to enforce his EOQ on the supplier in case of a break-down in negotiations. An algorithm for the determination of an optimal set of contracts which are specifically designed for different cost structures of the buyer, assumed by the supplier, will be presented. This algorithm was implemented in a software application, that supports the supplier in determining the optimal set of contracts
    corecore