126 research outputs found

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    Development of a WiFi and RFID based indoor location and mobility tracking system

    Get PDF
    Ubiquitous positioning and people mobility tracking has become one of the critical parts of our daily life. As a core element of the Location Based Services (LBS), the ubiquitous positioning capability necessitates seamless positioning across both indoor and outdoor environments. Nowadays, tracking outdoor with a relatively high accuracy and reliability can be achieved using matured technologies such as Global Navigation Satellite Systems (GNSS). However, it is still challenging for tracking in indoor environments such as airports, shopping malls and museums. The demand for indoor tracking has driven the fast development of indoor positioning and tracking technologies, especially Wi-Fi, RFID and smartphone etc. All these technologies have significantly enhanced the convenience of people’s daily life and the competitiveness of business firms. With the rapidly increased ubiquity of Wi-Fi enabled mobile phones and tablets, developing a robust location and mobility tracking system utilising such technologies will have a great potential for industry innovation and applications. This research is part of an Australian Research Council (ARC) project that involves two universities and one industry partner who is a large global shopping mall management company located in Australia. The project aims to develop a smart system for robust modelling and analysing the shopping behaviours of customers so that value-added services can be effectively provided. A number of field tests have been conducted and a large amount of data has been acquired both in the shopping mall of interest and the RMIT Indoor Positioning Laboratory. A large cohort of real users in the shopping mall were recorded where only one Wi-Fi access point (AP) connection at a time for each mobile device user was provided for our research. This makes most of the conventional tracking and positioning methods inapplicable. To overcome this constraint, a new hybrid system for positioning and mobility tracking — called single AP-connection location tracking system (SCLTS) was developed, which utilised Wi-Fi, RFID and mobile device technologies and took advantage of both the cell of origin (CoO) and fingerprinting positioning methods. Three new algorithms for Wi-Fi based indoor positioning were developed during this research. They are the common handover point determination (CHOPD) algorithm for determining the boundary of the cell; the algorithm for positioning with the case of same-line-dual-connection (SLDC) in a long narrow space (e.g., a long corridor) and the algorithm for positioning with the case of perpendicular-dual-connection of APs in a T-shape corridor for improving the positioning accuracy. The architecture of the SCLTS system was also developed as part of the implementation of the SCLTS system. Various experiments were conducted in a simulated large shopping-mall-like environment (i.e., the RMIT Indoor Positioning Lab) and the results showed that the performance of the SCLTS developed was very promising and the original goal of the project has been achieved. In addition, the two most popular indoor positioning methods — trilateration and fingerprinting were also optimised and implemented in a real industrial product and promising results have been achieved

    Wearable sensors networks for safety applications in industrial scenarios

    Get PDF
    Industrial contexts, and in particular the port areas, are very complex systems to be monitored and controlled due to the combined presence of vehicles and people. The port areas are the gateway between navigation and terrestrial transportation and are of great importance in transport logistics. Unfortunately, the management of port areas is quite complex because the safety of the workers must be always assured. Therefore, in such a context, a centralized control system for the monitoring and the prevention of risks is of particular importance. In this thesis, a real-time control system for the monitoring of people and vehicles in industrial areas is proposed. The proposed system is based on the Internet of Things paradigm, i.e. a network of “things” (such as sensors, tag RFID, actuators etc.) which can communicate and interact with each other within a shared IP addressing range, in order to share data and contribute to the management and development of advanced applications. Specifically, the thesis is focused on the design of a wearable sensors network based on RFID technology, and specifically on WISP sensors, for assuring the safety of the workers. In this network, wearable devices that can be inserted directly on the textile have been selected. Differently from conventional sensors, wearable sensors ensure a higher level of comfort, and provide higher electromagnetic performance. Furthermore, textile materials are easily available. Microstrips are good candidates for these applications because they mainly radiate perpendicularly to the planar structure, and their ground plane allows a good shielding on the body tissues. Therefore, I have designed specific antennas for RFID, that unlike the classical microstrip antennas have the radiating surface composed of several "side by side" conductive "threads of textile". Since the microwave model does not allow the design of an antenna with these characteristics with a good approximation, a specific microwave model for coupled lines has been designed. With this model, the specific antenna for RFID has been designed, with Jeans as substrate. The particular antenna’s substrate allows direct integration into garments, but since the wearable antennas are placed very close to the human body, biological issues which may arise on the human body from the use of these sensors have been analysed. The Specific Absorption Rate (SAR) has been considered and simulations have been conducted for evaluating the effects on the human body, and especially on the head, when irradiated with the electromagnetic waves generated by the wearable antenna realized with different materials. Dosimetric effects have been evaluated in function of the distance from the body, in order to define a safe distance for placing the antenna on the human body. The SAR has been evaluated also for full patches with different textile substrates, whose surface is larger than that of the proposed model of coupled lines. Therefore, if the SAR values evaluated for the full patch are satisfying, the SAR values for the model of coupled lines will surely be acceptable

    Wearable sensors networks for safety applications in industrial scenarios

    Get PDF
    Industrial contexts, and in particular the port areas, are very complex systems to be monitored and controlled due to the combined presence of vehicles and people. The port areas are the gateway between navigation and terrestrial transportation and are of great importance in transport logistics. Unfortunately, the management of port areas is quite complex because the safety of the workers must be always assured. Therefore, in such a context, a centralized control system for the monitoring and the prevention of risks is of particular importance. In this thesis, a real-time control system for the monitoring of people and vehicles in industrial areas is proposed. The proposed system is based on the Internet of Things paradigm, i.e. a network of “things” (such as sensors, tag RFID, actuators etc.) which can communicate and interact with each other within a shared IP addressing range, in order to share data and contribute to the management and development of advanced applications. Specifically, the thesis is focused on the design of a wearable sensors network based on RFID technology, and specifically on WISP sensors, for assuring the safety of the workers. In this network, wearable devices that can be inserted directly on the textile have been selected. Differently from conventional sensors, wearable sensors ensure a higher level of comfort, and provide higher electromagnetic performance. Furthermore, textile materials are easily available. Microstrips are good candidates for these applications because they mainly radiate perpendicularly to the planar structure, and their ground plane allows a good shielding on the body tissues. Therefore, I have designed specific antennas for RFID, that unlike the classical microstrip antennas have the radiating surface composed of several "side by side" conductive "threads of textile". Since the microwave model does not allow the design of an antenna with these characteristics with a good approximation, a specific microwave model for coupled lines has been designed. With this model, the specific antenna for RFID has been designed, with Jeans as substrate. The particular antenna’s substrate allows direct integration into garments, but since the wearable antennas are placed very close to the human body, biological issues which may arise on the human body from the use of these sensors have been analysed. The Specific Absorption Rate (SAR) has been considered and simulations have been conducted for evaluating the effects on the human body, and especially on the head, when irradiated with the electromagnetic waves generated by the wearable antenna realized with different materials. Dosimetric effects have been evaluated in function of the distance from the body, in order to define a safe distance for placing the antenna on the human body. The SAR has been evaluated also for full patches with different textile substrates, whose surface is larger than that of the proposed model of coupled lines. Therefore, if the SAR values evaluated for the full patch are satisfying, the SAR values for the model of coupled lines will surely be acceptable

    A Pervasive Computational Intelligence based Cognitive Security Co-design Framework for Hype-connected Embedded Industrial IoT

    Get PDF
    The amplified connectivity of routine IoT entities can expose various security trajectories for cybercriminals to execute malevolent attacks. These dangers are even amplified by the source limitations and heterogeneity of low-budget IoT/IIoT nodes, which create existing multitude-centered and fixed perimeter-oriented security tools inappropriate for vibrant IoT settings. The offered emulation assessment exemplifies the remunerations of implementing context aware co-design oriented cognitive security method in assimilated IIoT settings and delivers exciting understandings in the strategy execution to drive forthcoming study. The innovative features of our system is in its capability to get by with irregular system connectivity as well as node limitations in terms of scares computational ability, limited buffer (at edge node), and finite energy. Based on real-time analytical data, projected scheme select the paramount probable end-to-end security system possibility that ties with an agreed set of node constraints. The paper achieves its goals by recognizing some gaps in the security explicit to node subclass that is vital to our system’s operations

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    • …
    corecore