140 research outputs found

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    Automated and intelligent hacking detection system

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringThe Controller Area Network (CAN) is the backbone of automotive networking, connecting many Electronic ControlUnits (ECUs) that control virtually every vehicle function from fuel injection to parking sensors. It possesses,however, no security functionality such as message encryption or authentication by default. Attackers can easily inject or modify packets in the network, causing vehicle malfunction and endangering the driver and passengers. There is an increasing number of ECUs in modern vehicles, primarily driven by the consumer’s expectation of more features and comfort in their vehicles as well as ever-stricter government regulations on efficiency and emissions. Combined with vehicle connectivity to the exterior via Bluetooth, Wi-Fi, or cellular, this raises the risk of attacks. Traditional networks, such as Internet Protocol (IP), typically have an Intrusion Detection System (IDS) analysing traffic and signalling when an attack occurs. The system here proposed is an adaptation of the traditional IDS into the CAN bus using a One Class Support Vector Machine (OCSVM) trained with live, attack-free traffic. The system is capable of reliably detecting a variety of attacks, both known and unknown, without needing to understand payload syntax, which is largely proprietary and vehicle/model dependent. This allows it to be installed in any vehicle in a plug-and-play fashion while maintaining a large degree of accuracy with very few false positives.A Controller Area Network (CAN) é a principal tecnologia de comunicação interna automóvel, ligando muitas Electronic Control Units (ECUs) que controlam virtualmente todas as funções do veículo desde injeção de combustível até aos sensores de estacionamento. No entanto, não possui por defeito funcionalidades de segurança como cifragem ou autenticação. É possível aos atacantes facilmente injetarem ou modificarem pacotes na rede causando estragos e colocando em perigo tanto o condutor como os passageiros. Existe um número cada vez maior de ECUs nos veículos modernos, impulsionado principalmente pelas expectativas do consumidores quanto ao aumento do conforto nos seus veículos, e pelos cada vez mais exigentes regulamentos de eficiência e emissões. Isto, associada à conexão ao exterior através de tecnologias como o Bluetooth, Wi-Fi, ou redes móveis, aumenta o risco de ataques. Redes tradicionais, como a rede Internet Protocol (IP), tipicamente possuem um Intrusion Detection Systems (IDSs) que analiza o tráfego e assinala a presença de um ataque. O sistema aqui proposto é uma adaptação do IDS tradicional à rede CAN utilizando uma One Class Support Vector Machine (OCSVM) treinada com tráfego real e livre de ataques. O sistema é capaz de detetar com fiabilidade uma variedade de ataques, tanto conhecidos como desconhecidos, sem a necessidade de entender a sintaxe do campo de dados das mensagens, que é maioritariamente proprietária. Isto permite ao sistema ser instalado em qualquer veículo num modo plug-and-play enquanto mantém um elevado nível de desempenho com muito poucos falsos positivos

    Smart Vehicles, Technologies and Main Applications in Vehicular Ad hoc Networks

    Get PDF
    Vehicular Ad hoc NETworks (VANETs) belong to a subcategory of traditional Mobile Ad hoc NETworks (MANETs). The main feature of VANETs is that mobile nodes are vehicles endowed with sophisticated “on-board” equipments, traveling on constrained paths (i.e., roads and lanes), and communicating each other for message exchange via Vehicle-to-Vehicle (V2V) communication protocols, as well as between vehicles and fixed road-side Access Points (i.e., wireless and cellular network infrastructure), in case of Vehicle-to-Infrastructure (V2I) communications. In this chapter we will introduce the state-of-the-art of recent technologies used in vehicular networks, specifically for smart vehicles, which require novel functionalities such as data communications, accurate positioning, control and decision monitoring

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures

    Get PDF
    New requirements from the customers\u27 and manufacturers\u27 point of view such as adding new software functions during the product life cycle require a transformed architecture design for future vehicles. The paradigm of signal-oriented communication established for many years will increasingly be replaced by service-oriented approaches in order to increase the update and upgrade capability. In this article, we provide an overview of current protocols and communication patterns for automotive architectures based on the service-oriented architecture (SOA) paradigm and compare them with signal-oriented approaches. Resulting challenges and opportunities of SOAs with respect to information security are outlined and discussed. For this purpose, we explain different security countermeasures and present a state of the section of automotive approaches in the fields of firewalls, Intrusion Detection Systems (IDSs) and Identity and Access Management (IAM). Our final discussion is based on an exemplary hybrid architecture (signal- and service-oriented) and examines the adaptation of existing security measures as well as their specific security features

    A framework and methods for on-board network level fault diagnostics in automobiles

    Get PDF
    A significant number of electronic control units (ECUs) are nowadays networked in automotive vehicles to help achieve advanced vehicle control and eliminate bulky electrical wiring. This, however, inevitably leads to increased complexity in vehicle fault diagnostics. Traditional off-board fault diagnostics and repair at service centres, by using only diagnostic trouble codes logged by conventional onboard diagnostics, can become unwieldy especially when dealing with intermittent faults in complex networked electronic systems. This can result in inaccurate and time consuming diagnostics due to lack of real-time fault information of the interaction among ECUs in the network-wide perspective. This thesis proposes a new framework for on-board knowledge-based diagnostics focusing on network level faults, and presents an implementation of a real-time in-vehicle network diagnostic system, using case-based reasoning. A newly developed fault detection technique and the results from several practical experiments with the diagnostic system using a network simulation tool, a hardware- in-the- loop simulator, a disturbance simulator, simulated ECUs and real ECUs networked on a test rig are also presented. The results show that the new vehicle diagnostics scheme, based on the proposed new framework, can provide more real-time network level diagnostic data, and more detailed and self-explanatory diagnostic outcomes. This new system can provide increased diagnostic capability when compared with conventional diagnostic methods in terms of detecting message communication faults. In particular, the underlying incipient network problems that are ignored by the conventional on-board diagnostics are picked up for thorough fault diagnostics and prognostics which can be carried out by a whole-vehicle fault management system, contributing to the further development of intelligent and fault-tolerant vehicles

    Towards Automotive Embedded Systems with Self-X Properties

    Get PDF
    With self-adaptation and self-organization new paradigms for the management of distributed systems have been introduced. By enhancing the automotive software system with self-X capabilities, e.g. self-healing, self-configuration and self-optimization, the complexity is handled while increasing the flexibility, scalability and dependability of these systems. In this chapter we present an approach for enhancing automotive systems with self-X properties. At first, we discuss the benefits of providing automotive software systems with self-management capabilities and outline concrete use cases. Afterwards, we will discuss requirements and challenges for realizing adaptive automotive embedded systems
    corecore